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Motivation 1: Why AdS/CFT?

▶ The AdS/CFT correspondence gives us a map between a
gravitational theory in AdS and an “ordinary” quantum
system without gravity living on the boundary.

▶ Remarkably, AdS/CFT allows us to compute some aspects of
the strong-coupling, large-N dynamics of the boundary theory.

▶ One might say that gravity provides the most efficient set of
variables to describe the strongly-coupled boundary dynamics.

▶ Given the sucess of AdS/CFT, it is natural to ask whether we
can derive it from some underlying fundamental principles.

▶ Equivalently, given a suitable quantum system, how do we go
about finding gravity within its Hilbert space?
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▶ In this talk, we will take inspiration from the theory of
quantum information and computation.

▶ The Gottesman-Knill theorem and related work identifies a
large class of quantum circuits that can be simulated
efficiently on a classical computer. [Gottesman ’98, Aaronson and Gottesman ’04,

Mari & Eisert ’12, Veitch et al ’12]

▶ This construction uses a discrete version of the Wigner
function.

▶ Here, we will argue that this formalism may be well-suited in
looking for efficient classical variables for quantum dynamics.



Motivation 1: Why AdS/CFT?

▶ In this talk, we will take inspiration from the theory of
quantum information and computation.

▶ The Gottesman-Knill theorem and related work identifies a
large class of quantum circuits that can be simulated
efficiently on a classical computer. [Gottesman ’98, Aaronson and Gottesman ’04,

Mari & Eisert ’12, Veitch et al ’12]

▶ This construction uses a discrete version of the Wigner
function.

▶ Here, we will argue that this formalism may be well-suited in
looking for efficient classical variables for quantum dynamics.



Motivation 1: Why AdS/CFT?

▶ In this talk, we will take inspiration from the theory of
quantum information and computation.

▶ The Gottesman-Knill theorem and related work identifies a
large class of quantum circuits that can be simulated
efficiently on a classical computer. [Gottesman ’98, Aaronson and Gottesman ’04,

Mari & Eisert ’12, Veitch et al ’12]

▶ This construction uses a discrete version of the Wigner
function.

▶ Here, we will argue that this formalism may be well-suited in
looking for efficient classical variables for quantum dynamics.



Motivation 1: Why AdS/CFT?

▶ In this talk, we will take inspiration from the theory of
quantum information and computation.

▶ The Gottesman-Knill theorem and related work identifies a
large class of quantum circuits that can be simulated
efficiently on a classical computer. [Gottesman ’98, Aaronson and Gottesman ’04,

Mari & Eisert ’12, Veitch et al ’12]

▶ This construction uses a discrete version of the Wigner
function.

▶ Here, we will argue that this formalism may be well-suited in
looking for efficient classical variables for quantum dynamics.



Motivation 2: Complexity of bulk reconstruction

▶ Recent progress on reproducing the Page curve in AdS/CFT
[Penington ’19, Engelhardt et al ’19] suggests that after Page time, the
entanglement wedge of the radiation system includes an island
region in the black hole interior.

▶ While this is an elegant resolution to the information paradox,
it points to an essential non-locality in quantum gravity.

▶ Several authors [Harlow-Hayden ’13, Kim-Preskill-Tang ’20] have suggested that
any operation that can manipulate the black hole interior from
the black hole radiation should be exponentially complex.

▶ Semi-classical notion of spacetime protected by complexity.

▶ This conjecture was geometrized in the form of the python’s
lunch conjecture [Brown et al ’19].
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Motivation 2: Complexity of bulk reconstruction

▶ Part of the problem with proving this conjecture is the
absence of a computationally tractable notion of complexity.

▶ In the second half of this talk, we will argue that the discrete
Wigner function gives a useful language to make progress
towards the python’s lunch conjecture.
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Review: Wigner function
▶ In standard quantum mechanics, the Wigner function for a

state ψ is a quasi-probability distribution in phase space:

Wψ(q, p) =
1

2π

∫ ∞

−∞
dy ⟨q − y

2
|ψ⟩⟨ψ|q +

y

2
⟩ e−ipy .

▶ Equivalently, one can write:

W (q, p) =
1

2π
⟨ψ|Â(q, p)|ψ⟩,

where Â(q, p) are Fourier transforms of displacement
operators:

Â(q, p) =

∫
dp′dq′

2π
e i(qp

′−pq′)e i(p
′q̂−q′p̂),

⟨q′|Â(q, p)|q′′⟩ = δ(q − q′ + q′′

2
)e−ip(q′−q′′).

▶ The Wigner function is the inverse of the Weyl map from
classical functions to Weyl-ordered operators.
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⟨ψ|Â(q, p)|ψ⟩,
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Review: Wigner function

▶ The Wigner function is real, and it is normalized:∫
dpdq

2π
Wψ(q, p) = 1,

and integrating it over p (or q) gives the probability density in
q (or p).

▶ However, it is not a probability distribution in general – it can
take on negative values.

▶ States for which the Wigner function is everywhere positive
may be regarded as classical states (more on this below).

▶ For instance, a pure state has a positive Wigner function if
and only if it is Gaussian (i.e., a generalized coherent state).
[Hudson ’74, Soto & Claverie ’83]
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Review: Discrete Wigner function

▶ So far, we have discussed the case of L2(R), but Wigner
functions can also be defined for finite dimensional Hilbert
spaces [Wooters ’87, Gibbons, Hoffman & Wooters ’04, Gross ’06 ...].

▶ For a Hilbert space of dimension D, the phase space is taken
to be the lattice P = ZD × ZD .

▶ The formalism works best when D is prime, but can be
generalized to arbitrary D.
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Review: Discrete Wigner function

▶ Let {|q⟩}D−1
q=0 be a choice of an ordered, orthonormal basis.

▶ With respect to this basis, we define exponentiated position
and momentum operators as:

Ẑ (p)|q⟩ = e
2πipq
D |q⟩, X̂ (q)|q′⟩ = |(q′ + q)modD⟩.

▶ One then defines displacement operators and the
corresponding Wigner function in direct analogy with the
continuous case:

Â(q, p) =
D−1∑

q′,q′′=0

δ̃2q,q′+q′′e
− 2πi(q′−q′′)p

D |q′⟩⟨q′′|,

Wψ(q, p) =
1

D
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Â(q, p) =
D−1∑

q′,q′′=0

δ̃2q,q′+q′′e
− 2πi(q′−q′′)p

D |q′⟩⟨q′′|,

Wψ(q, p) =
1

D
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Review: Discrete Wigner function

▶ The discrete Wigner function is also real and normalized:

D−1∑
q,p=0

Wψ(q, p) = 1,

and summing it over p (or q) gives the probability of q (or p).

▶ But as before, the Wigner function is not a probability
distribution, in that it can take negative values.

▶ States with positive Wigner functions can be thought of as
being classical in the following sense:

Gottesman-Knill theorem

Any quantum circuit which starts with a Wigner positive state and
only involves stabilizer (i.e., positivity preserving) operations can
be simulated efficiently on a classical computer. [Aaronson and Gottesman ’04,

Mari & Eisert ’12, Veitch et al ’12]
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Wigner negativity

▶ For a general state ψ, the negativity of the Wigner function
(sometimes called Mana), defined as

Nψ =
D−1∑
q,p=0

|Wψ(q, p)|

can be thought of as a measure of “stabilizer complexity”.

▶ It is a monotone under stabilizer operations [Veitch et al ’14].

▶ Intuitively, one can regard it as a measure of the complexity of
simulating the quantum circuit on a classical computer [Stahlke

’14, Pashayan et al ’15].
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Wigner negativity and Uncertainty

▶ Wigner negativity is also related to quantum uncertainty:

S1/2(q) ≥ logNψ,

S1/2 = 2 log
∑
q

P
1/2
q , Pq = |⟨q|ψ⟩|2.

where S1/2(q) is the 1/2-Renyi entropy of the probability
distribution in the q-basis.

▶ More generally:

min
(
S1/2(q), S1/2(p)

)
≥ logNψ.

▶ Thus, Wigner negativity necessarily implies some amount of
quantum spreading in phase space.



Negativity growth under time evolution



Minimizing negativity growth

▶ We now come to our main question: when does the time
evolution of a state in a quantum system admit a
semi-classical description?

▶ Inspired by results from quantum information theory, we may
say that this happens when the Wigner negativity remains
small along time evolution.

▶ However, recall that the Wigner function is defined with
respect to an ordered basis.

So, given an initial state ψ0 and the time evolution operator e−itH ,
our task is to find an ordered basis for the Hilbert space such that
the Wigner negativity growth of the state under time-evolution is
“minimized”.
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Minimizing negativity growth

Claim

The early time Wigner negativity growth is minimized by the
Krylov basis K (up to individual phases) [Basu, Ganguly, Nath & OP ’24].



Krylov basis

▶ The Krylov basis is obtained by orthonormalizing the set of
states ψ0,Hψ0,H

2ψ0 · · · :

|0⟩K = |ψ0⟩,

|1⟩K =
1√
N1

(H|ψ0⟩ − ⟨0K|H|ψ0⟩|0⟩K) ,

|2⟩K =
1√
N2

(
H2|ψ0⟩ − ⟨0K|H2|ψ0⟩|0⟩K − ⟨1K|H2|ψ0⟩|1⟩K

)
,

▶ The Krylov basis is known to minimize the “spread of the
wavefunction” [Balasubramanian et al ’22].

▶ The same idea has also appeared previously in the context of
operator spreading [Parker et al ’18, Swingle et al ’20, Rabinovici et al ’21].



Minimizing negativity growth: perturbative argument

▶ By minimizing the early time negativity growth, we mean the
following: if we wish to minimize the negativity at t = 0, we
can simply take ψ0 to be a basis vector, and without loss of
generality, we take it to be the 0th basis vector.

▶ Now, for any choice of the first basis vector, the coefficient of
the linear in time growth of the negativity is always larger than
the coefficient of the linear in time growth in the Krylov basis.

▶ Similarly, for any basis which agrees with the Krylov basis up
to the mth vector, but differs at m + 1, the coefficients in the
Taylor approximation of the Wigner function agree between
the two bases up to tm, but at O(tm+1), the negativity in the
Krylov basis is smaller than any other such basis.
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Negativity growth in random matrix theory

▶ The above argument was perturbative; we would like to go
beyond perturbation theory and study the finite time behavior
of Wigner negativity.

▶ In order to make progress, we will use tools from random
matrix theory.

▶ We will choose a Hamiltonian (i.e., a D × D Hermitian
matrix) from the Gaussian unitary ensemble. Chaotic systems
are expected to show random matrix theory behavior, so we
expect our analysis to apply in such systems.

▶ The initial state must also be sufficiently generic w.r.t the
Hamiltonian. In the basis where the Hamiltonian is a random
matrix, we can simply take the state (1, 0, · · · , 0) as the initial
state.
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matrix, we can simply take the state (1, 0, · · · , 0) as the initial
state.
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Negativity growth in random matrix theory

Claim

The Wigner negativity w.r.t a generic basis grows rapidly and
saturates to an exponentially large value within an O(1) amount of
time evolution. On the other hand, in the Krylov basis, the Wigner
negativity grows gradually and takes an exponential amount of
time to saturate.
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Negativity growth in generic basis

▶ We can take the basis {|i⟩} to be the one w.r.t which the
Hamiltonian is a random matrix.

▶ Recall that the initial state ψ0 will be the first basis vector |0⟩
in this basis.

▶ We would like to compute the average Wigner negativity as a
function of time:

N (t) =
1

Z

∫
dH e−DTrH2Nψt , ψt = e−itHψ0.

▶ Consider a change of basis which leaves ψ0 invariant but
rotates the rest of the basis vectors by a Haar random unitary
Uij (i , j ̸= 0).
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Negativity growth in generic basis

▶ From the definition of the Wigner function:

W (q, p) =
1

D

D−1∑
k,ℓ=0

δ̃2q,k+ℓe
− 2πi(k−ℓ)p

D ⟨ψ0|e itH |k⟩⟨ℓ|e−itH |ψ0⟩

we see that such a change of basis does not change the
average value of the negativity.

▶ This follows from the unitary invariance of the GUE.

▶ Thus, we can write the averaged negativity as

N (t) =

∫
DUij

1

Z

∫
dH e−DTrH2

∑
q,p

|WU(q, p)|,

where WU is the Wigner function w.r.t the rotated basis.

▶ It is convenient to do the U integral first using standard
techniques for Haar integration.
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Replica trick
▶ One difficulty is that we want to do the Haar integral over the

absolute value of the Wigner function.

▶ We get around this using the replica trick: we instead compute∫
dUij (WU(q, p))

2n

for integer n, and then analytically continue the answer to
n → 1

2 .
▶ At large D, this calculation can be done by summing up a set

of leading diagrams, and we get

N(t) = S +

√
2D

π

√
1− S2 + O(1/

√
D),

S(t) = |⟨ψ0|e−itH |ψ0⟩|2,

where S(t) is called the survival probability or the spectral
form factor.



Replica trick
▶ One difficulty is that we want to do the Haar integral over the

absolute value of the Wigner function.
▶ We get around this using the replica trick: we instead compute∫

dUij (WU(q, p))
2n

for integer n, and then analytically continue the answer to
n → 1

2 .

▶ At large D, this calculation can be done by summing up a set
of leading diagrams, and we get

N(t) = S +

√
2D

π

√
1− S2 + O(1/

√
D),

S(t) = |⟨ψ0|e−itH |ψ0⟩|2,

where S(t) is called the survival probability or the spectral
form factor.



Replica trick
▶ One difficulty is that we want to do the Haar integral over the

absolute value of the Wigner function.
▶ We get around this using the replica trick: we instead compute∫

dUij (WU(q, p))
2n

for integer n, and then analytically continue the answer to
n → 1

2 .
▶ At large D, this calculation can be done by summing up a set

of leading diagrams, and we get

N(t) = S +

√
2D

π

√
1− S2 + O(1/

√
D),

S(t) = |⟨ψ0|e−itH |ψ0⟩|2,

where S(t) is called the survival probability or the spectral
form factor.



Negativity growth in generic basis
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▶ In particular, S(t) decays away from 1 in an O(1) amount of
time evolution.

▶ So, we see that the negativity grows rapidly and saturates to

its maximum value of
√

2D
π in O(1) time.



Negativity growth in the Krylov basis

▶ On the other hand, the negativity in the Krylov basis grows
gradually (power law) for a time of O(

√
D), then hits a sharp

ramp and saturates to a final value close to
√

2D
π .
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Negativity growth in the Krylov basis

▶ We can understand the slow growth in the Krylov basis
analytically.

▶ The Krylov basis has the special property that it
tridiagonalizes the Hamiltonian:

H =


a0 b1 0 0 · · · 0
b1 a2 b2 0 · · · 0
0 b2 a3 b3 · · · 0
...

...
0 0 0 · · · bn−1 an


▶ The average values of the Lanczos coefficients in GUE are

known. In the large D limit, one finds [Balasubramanian et al, ’22]

an = 0, bn = 1, · · · (D → ∞, n fixed)

and the variances are O(1/D).
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Negativity growth in the Krylov basis

▶ So for fixed n as D → ∞, we get a simple effective
Hamiltonian in the Krylov basis:

Heff|n⟩ = |n − 1⟩+ |n + 1⟩.

▶ This Hamiltonian is easily diagonalized:

Heff|θ⟩ = 2 cos θ|θ⟩, ⟨n|θ⟩ =
√

2

π
sin [(n + 1)θ] .

▶ Using this, we can compute the time evolution of the initial
state:

⟨n|e−itHeff |0⟩ = in
(n + 1)

t
Jn+1(2t).
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Negativity growth in the Krylov basis
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▶ The wavefunction is localized in the region n ≤ 2t, and decays
exponentially beyond. We can use this to bound the growth of
Wigner negativity.

▶ Note that we have neglected statistical fluctuations of the
Lanczos coefficients, which is a good approximation for
t ≪

√
D.



Bound on Negativity growth

▶ Recall that the Wigner negativity is upper bounded by the
spread in the state:

logN ≤ S1/2(q), S1/2(q) = 2 log
∑
n

|⟨n|ψt⟩|.

▶ Using the formula for the wavefunction, it is easy to show that∑
n

|⟨n|ψt⟩| ≤ const
√
t,

so that the negativity grows slower that t.

▶ One can actually do better – by using the Jensen’s inequality,
it is possible to show that

N ≤ const.
√
t.
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Bound on Negativity growth

100

log(t/
√

D) −→

10−1lo
g
(N

(t
)/
√

D
)
−→

D=101

D=151

D=199

D=251

D=307

D=401

D=503

D=547

▶ Thus, the negativity in the Krylov basis cannot become
exponentially large in any finite O(1) amount of time.

▶ Of course, at times of O(
√
D), these arguments break down.

Precisely at this time, numerics show a sharp ramp followed

by saturation close to the maximum value of
√

2D
π .



Stabilizer complexity of Hawking radiation



Stabilizer complexity of Hawking radiation

▶ We now turn to our second application – to compute the
Wigner negativity of Hawking radiation, thought of as
stabilizer complexity from the resource theory of stabilizer
computation.

▶ In order to model an evaporating scenario, we entangle a black
hole B with a quantum mechanical bath/reservoir R [PSSY ’19]:

|Ψ⟩ = 1√
D

D∑
i=1

|ψi ⟩B ⊗ |i⟩R ,

where the states {|i⟩} in R are orthonormal, |ψi ⟩ are
end-of-the-world brane states in JT gravity.



Stabilizer complexity of Hawking radiation

▶ The reduced density matrix for the bath is given by:

ρR =
1

D eS0Z1

D∑
i ,j=1

⟨ψi |ψj⟩B |j⟩⟨i |R .

▶ For small D, one can treat the states {|ψi ⟩} as being
approximately orthogonal. This leads to a maximally mixed
state on the bath whose entropy grows as logD.

▶ However, when D becomes O(eS0), one can no longer treat
the states {|ψi ⟩} as being orthogonal.

▶ Indeed, it was shown in [PSSY ’19] that there is a phase transition
in the entanglement entropy at D ∼ eS0 . This cuts off the
naive growth of entropy with D and realizes the expected
Page curve.

▶ This happens in gravity via replica wormholes.



Stabilizer complexity of Hawking radiation

▶ Our goal is to compute the Wigner negativity of the reduced
density matrix ρR using the rules of the gravitational path
integral.

▶ In order to compute the Wigner function, we must choose an
orthonormal basis for the radiation Hilbert space.

▶ In general, the Wigner negativity very much depends on the
choice of basis. However, in our gravity calculation, the
negativity turns out to have a universal basis independent
form, which can then only depend on information theoretic
properties of the state ρR .



Wigner function

▶ The Wigner function can be represented diagrammatically as
follows:

▶ This gravity path integral computes the ensemble averaged
Wigner function:

W (q, p) =
1

D2eS0Z1

D−1∑
k,ℓ=0

Akℓe
S0Z1δk,ℓ =

1

D2
Tr(A) =

1

D2
.

▶ So, on average, the Wigner function looks uniform and
positive. However, what we actually want to compute is the
ensemble average of the negativity.



Wigner negativity

▶ So, our goal is to compute the ensemble averaged Wigner
negativity of the Hawking radiation using the gravitational
path integral:

N =
∑
q,p

|W (q, p)|,

where note that the absolute value is inside the average.

▶ In order to deal with the absolute value, we employ the replica
trick: we first evaluate the ensemble average over W 2n for
integer n, and analytically continue the result to n = 1

2 :

N = lim
n→ 1

2

∑
q, p

W 2n(q, p).



Wigner negativity

From the boundary point of view, this corresponds to the following
boundary conditions:

A

AA

A

A A



Wigner negativity before Page time
▶ First, consider the regime D ≪ eS0 . In this limit, the

dominant contribution comes from the completely
disconnected diagram:

A

AA

A

A A

▶ This gives:

W 2n(q, p) ≈
(
W (q, p)

)2n
=

1

D4n
· · · (D ≪ eS0).

▶ Upon analytic continuation to n = 1
2 , we find

N ≈ 1, · · · (D ≪ eS0).



Wigner negativity after Page time

▶ Next, consider the regime D ≫ eS0 . In this limit, the
dominant contribution comes from the pair-wise connected
diagram:

A

AA

A

A A

▶ While such diagrams are subleading in eS0 compared to the
fully disconnected diagram, the EOW brane index contractions
for such diagrams give an enhancement at large D coming
from the fact that Tr(A2) = D.



Wigner negativity after Page time
▶ The pairwise connected diagram gives:

W 2n(q, p) ≈ (2n)!

2nn!

(
eS0Z2 Tr(A

2)
)n(

eS0Z1 D2
)2n =

(2n)!

2nn!

(
Z2

Z 2
1

)n 1

enS0D3n
.

▶ Upon analytic continuation to n = 1
2 , we find

N ≈
√

2

π
exp [Smax − S2] , · · · (D ≫ eS0),

where S2 is the 2nd Rényi entropy of the radiation post Page
time,

S2 = S0 − log

(
Z2

Z 2
1

)
,

and Smax = logD is the coarse-grained entropy, or
equivalently the entropy of the maximally mixed state on R.



Wigner negativity

▶ Thus, the Hawking radiation has an O(1) stabilizer complexity
before Page time, but an exponentially large complexity after
Page time.
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▶ We can attribute this exponentially large complexity past the
Page point to the fact that the entanglement wedge of the
radiation includes an island region in the black hole interior.


