

National Center for Theoretical Sciences

Physics Division 國家理論科學研究中心 物理組

NTU-NCTS Holography and Quantum Information Workshop Sep.29-Oct.3

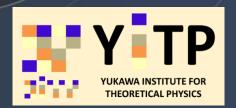
Time-like Entanglement Entropy and

Traversable Wormholes

Tadashi Takayanagi

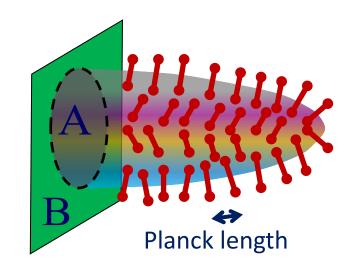
Yukawa Institute for Theoretical Physics

Kyoto University



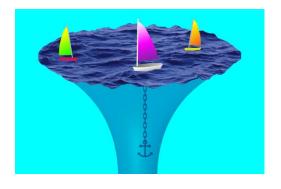
1 Introduction

The relations between holography and quantum information implies that the space coordinate in gravity may emerge from quantum entanglement.



What about the time coordinate?

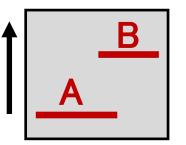
Relevant questions



[Q1] How the time in de Sitter spaces emerge from CFTs?

[Q2] What is a "time-like vesion" of entanglement?

→ causal connection vs entanglement?



[Q3] Is traversability of wormholes related to quantum information?

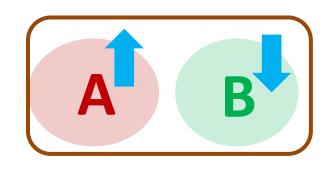
In this talk, we will argue that these are directly related to a generalization of quantum entanglement to the case where the density matrices are not hermitian.

The generalization of entanglement entropy to the above cases is called **pseudo entropy**.

[Ref: arXiv:2005.13801 Yoshifumi Nakata (YITP, Kyoto), Yusuke Taki (YITP, Kyoto) Kotaro Tamaoka (Nihon U.), Zixia Wei (Harvard U.) and TT]

Quantum Entanglement (QE)

Two subsystems A and B in a total system are quantum mechanically correlated.



e.g. Bell state:
$$|\Psi_{Bell}\rangle = \frac{1}{\sqrt{2}} [|\uparrow\rangle_A \otimes |\downarrow\rangle_B + |\downarrow\rangle_A \otimes |\uparrow\rangle_B]$$
 Minimal Unit of Entanglement

Pure States: Non-zero QE \Leftrightarrow $|\Psi\rangle_{AB} \neq |\Psi_1\rangle_A \otimes |\Psi_2\rangle_B$.

Direct Product

The best (or only) measure of quantum entanglement for pure states is known to be **entanglement entropy (EE)**.

EE = # of Bell Pairs between A and B

Entanglement entropy (EE) in HEP/CMP

Divide a quantum system into two subsystems A and B:

$$H_{tot} = H_A \otimes H_B$$
.

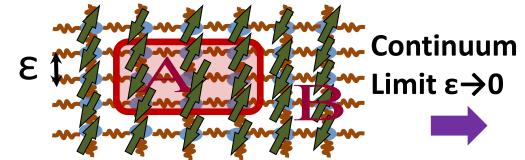
Define the reduced density matrix by $\rho_A = \operatorname{Tr}_B |\Psi\rangle\langle\Psi|$.

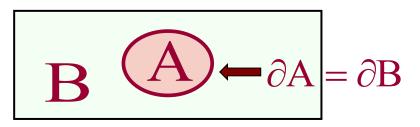
The entanglement entropy $S_{\scriptscriptstyle A}$ is defined by the von-Neumann entropy

$$S_A = -\mathrm{Tr}_A \, \rho_A \, \mathrm{log} \rho_A \, .$$

Quantum Many-body Systems

Quantum Field Theories (QFTs)





Entanglement Entropy (EE) in Quantum Information

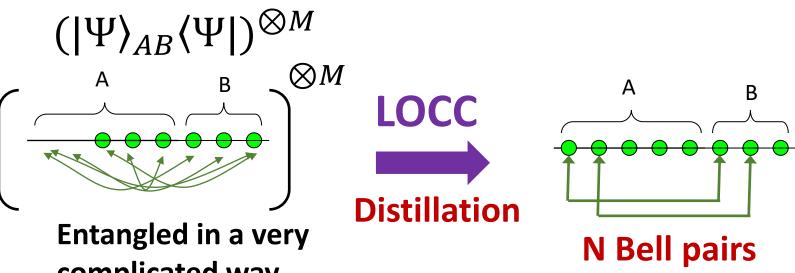
Setup
$$\Longrightarrow H_{tot} = H_A \otimes H_B$$
LO (=Local Operations)

Projection measurements and unitary trfs. which act either A or B only.

CC (=Classical Communications between A and B)

⇒These operations are combined and called LOCC.

A basic example of LOCC: quantum teleportation



complicated way

$$(|\Psi\rangle_{AB}\langle\Psi|)^{\otimes M} \Rightarrow (|\text{Bell}\rangle\langle\text{Bell}|)^{\otimes N}$$

Well-known fact in QI:

$$S(\rho_A) = \lim_{M \to \infty} \frac{N}{M}$$

$$\rho_A \equiv \text{Tr}_B[|\Psi\rangle_{AB}\langle\Psi|]$$

[Bennett-Bernstein-Popescu-Schumacher 95, Nielsen 98]

Holographic Entanglement Entropy

[Ryu-TT 2006, Hubeny-Rangamani-TT 2007]

A generic Lorentzian asymptotic AdS spacetime is dual to a time dependent state $|\Psi(t)\rangle$ in the dual CFT.

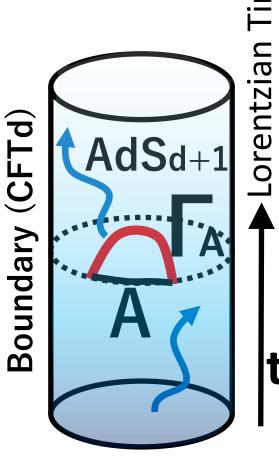
The time-dependent entanglement entropy

$$\rho_A(t) = \operatorname{Tr}_B[|\Psi(t)\rangle\langle\Psi(t)|] \longrightarrow S_A(t).$$

is computed from an extremal surface area:

$$S_A(t) = \operatorname{Min}_{\Gamma_A} \operatorname{Ext}_{\Gamma_A} \left[\frac{A(\Gamma_A)}{4G_N} \right]$$

$$\partial A = \partial \gamma_A$$
 and $A \sim \gamma_A$.



Question: More general formula?

Minimal areas in *Euclidean time dependent* asymptotically AdS spaces

= What kind of QI quantity in CFT?

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

Contents

- 1 Introduction
- ② Pseudo Entropy and Holography
- 3 Ex.1: Time-like Entanglement Entropy
- 4 Ex.2: Traversable AdS Wormhole
- 5 Ex.3: dS/CFT
- 6 Pseudo entropy and Entanglement Distillation
- 7 Conclusion

Main References

③,⑤→ arXiv:2210.09457, arXiv:2302.11695
with Kazuki Doi (YITP), Jonathan Harper (YITP),
Ali Mollabashi (IPM), Yusuke Taki (YITP).

►Time-like EE and PE in dS/CFT

→ arXiv: 2502.03531 + in preparation
with Jonathan Harper (YITP), Taishi Kawamoto (YITP),
Ryota Maeda (YITP), Nanami Nakamura (YITP)

▶PE in traversable AdS wormhole

(2) Pseudo Entropy and Holography

(2-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states $|\psi\rangle$ and $|\varphi\rangle$, and define

the transition matrix:

$$\tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}.$$

We decompose the Hilbert space as $H_{tot} = H_A \otimes H_R$. and introduce the reduced transition matrix:

$$\tau_A^{\psi|\varphi} = \operatorname{Tr}_B \left[\tau^{\psi|\varphi} \right]$$

Pseudo Entropy
$$S\left(\tau_A^{\psi|\varphi}\right) = -\operatorname{Tr}\left[\tau_A^{\psi|\varphi}\log\tau_A^{\psi|\varphi}\right].$$

Renyi Pseudo Entropy
$$S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \frac{1}{1-n} \log \operatorname{Tr}\left[\left(\tau_A^{\psi|\varphi}\right)^n\right].$$

(2-2) Basic Properties of Pseudo Entropy (PE)

• In general, $au_A^{\psi|\varphi}$ is not Hermitian. Thus PE is complex valued.

More generally, we call $S(\tau_A)$ pseudo entropy when τ_A is not hermitan.

- If either $|\psi\rangle$ or $|\varphi\rangle$ has no entanglement (i.e. direct product state) , then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right)=0.$
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \left[S^{(n)}\left(\tau_A^{\varphi|\psi}\right)\right]^{\dagger}$.
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right)=S^{(n)}\left(\tau_B^{\psi|\varphi}\right)$. $\Rightarrow \text{``SA=SB''}$

This implies a local holographic formula!

(2-3) Pseudo Entropy and Quantum Phases

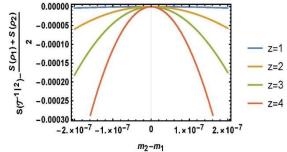
[Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21]

Properties of Pseudo entropy in QFTs

[1] Area law
$$S_A \sim \frac{\operatorname{Area}(\partial A)}{\varepsilon^{d-1}} + \text{(subleading terms)},$$

[2] The difference

$$\Delta S = S\left(\tau_A^{1|2}\right) + S\left(\tau_A^{2|1}\right) - S(\rho_A^1) - S(\rho_A^2)$$



is negative if $|\psi_1\rangle$ and $|\psi_2\rangle$ are in a same phase.

PE in a 2 dim. free scalar when we change its mass.

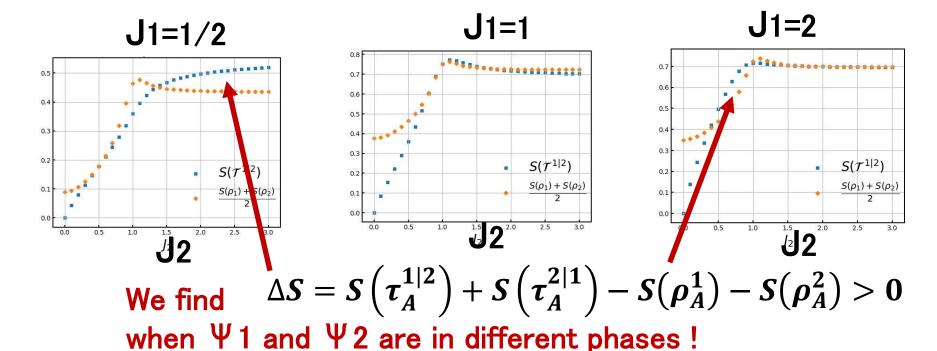
What happen if they belong to different phases? Can ΔS be positive?

Quantum Ising Chain with a transverse magnetic field

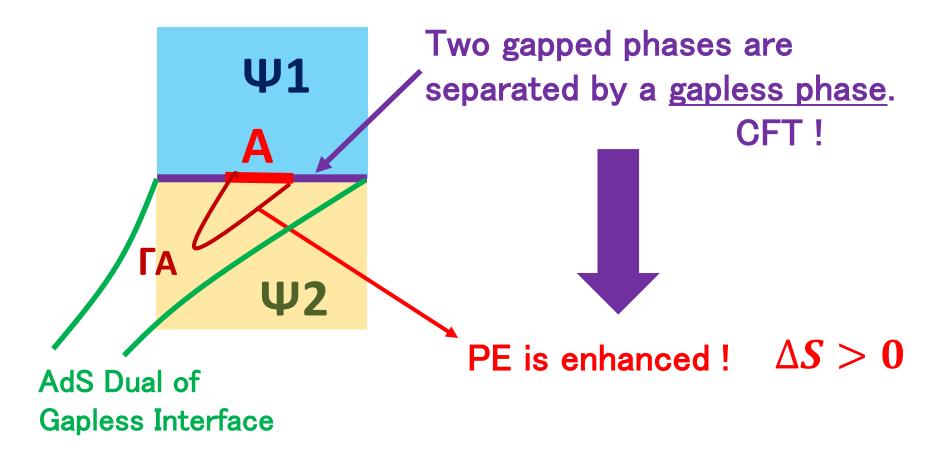
$$H = -J\sum_{i=0}^{N-1}\sigma_i^z\sigma_{i+1}^z - h\sum_{i=0}^{N-1}\sigma_i^x, \qquad \begin{array}{l} \Psi \ 1 \rightarrow \text{ vacuum of H(J1)} \\ \Psi \ 2 \rightarrow \text{ vacuum of H(J2)} \\ \text{(We always set h=1)} \end{array}$$

J<1 Paramagnetic Phase J>1 Ferromagnetic Phase

N=16, NA=8



Heuristic Interpretation



The gapless interface (edge state) also occurs in topological orders.

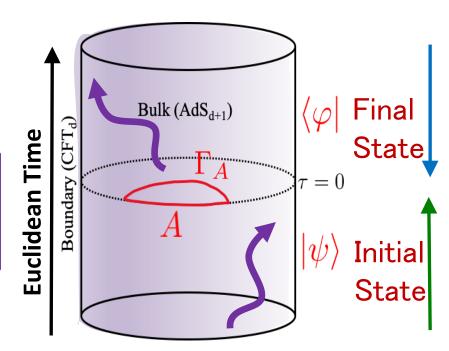
→ Topological pseudo entropy
[Nishioka-Taki-TT 2021, Caputa-Purkayastha-Saha-Sułkowski 2024]

(2-4) Holographic Pseudo Entropy (HPE) Formula

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

In Euclidean time dependent setups, the minimal surface area coincides with the pseudo entropy.

$$S\left(\tau_A^{\psi|\varphi}\right) = \operatorname{Min}_{\Gamma_A}\left[\frac{A(\Gamma_A)}{4G_N}\right]$$



Below we will apply HPE to Lorentzian spacetimes, where **non-Hermitian density matrices** show up.

Key question: "Is the time coordinate encoded in QI quantity?"

3 Time-like Entanglement Entropy

[Doi-Harper-Mollabashi-Taki-TT 2022]

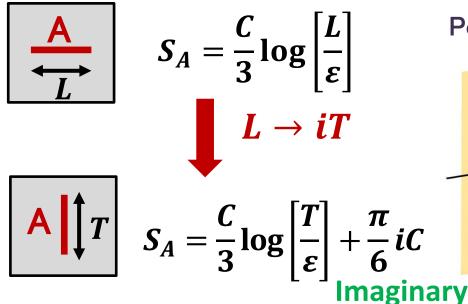
Consider a time-like version of entanglement entropy

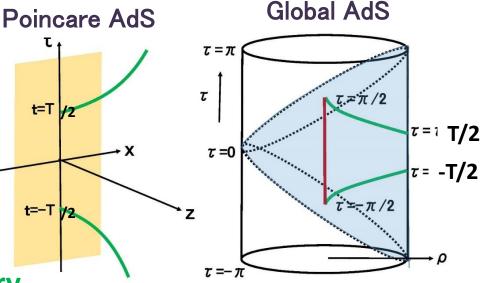
part!

by rotating the subsystem A into a time-like one:

CFT on an infinite line

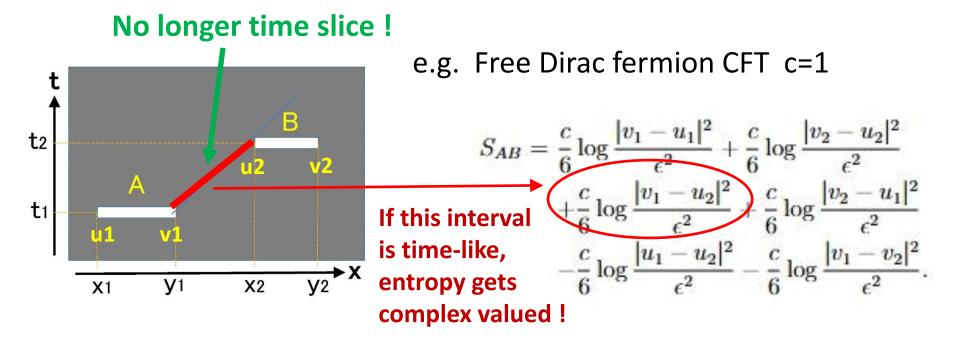
Holographic calculation





[More generally we need to consider extremal surfaces in complexified AdS as shown in Heller-Ori-Sereantes 23]

We can find an essentially same phenomenon in a more standard setup of entanglement entropy for double intervals:



The imaginary part of TEE is explained by the time-like geodesic in AdS.

[Kawamoto-Maeda-Nakamura-TT 25 refer also to Parzygnat-Fullwood 22]

A and B are causally connected

A Toy Example: Coupled Harmonic Oscillators

$$H = \frac{1}{\sqrt{1 - \lambda^2}} \left[a^{\dagger} a + b^{\dagger} b + \lambda (a^{\dagger} b^{\dagger} + ab) + 1 - \sqrt{1 - \lambda^2} \right].$$

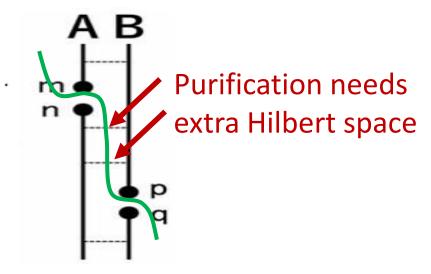
$$\lambda = \tanh 2\theta \qquad (\rho_{AB})_{aq}^{mp} =$$

$$[\rho_{AB}]_{a_1,b_1}^{a_2,b_2} = \langle \Psi_0 |_{12} \cdot (|b_2\rangle\langle b_1|)_2 \cdot \mathcal{P}e^{-i\int_{t_1}^{t_2} dt H_{12}(t)} \cdot (|a_2\rangle\langle a_1|)_1 \cdot |\Psi_0\rangle_{12},$$

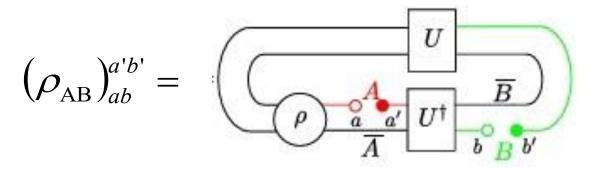
$$\rho_{AB}^{\dagger}\neq\rho_{AB}$$

$$S_{AB}^{(2)} = \log \left[\frac{1 + e^{-2iT} + (1 - e^{-2iT})\cosh 4\theta}{2} \right].$$
 Purification needs extra Hilbert space

$$S(\rho_{AB}) \neq 0$$
 $\rho_{AB} = \text{mixed}$



Recently, a clear theorem was provided by [Milekhin-Adamska-Preskill 2025]



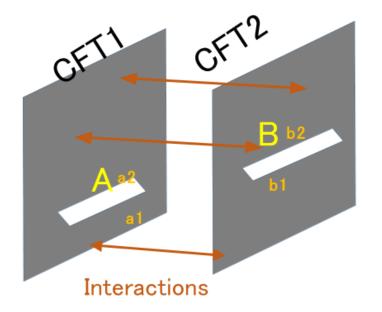
$$\langle [O_A(0), O_B(t)] \rangle = \text{Tr}[(\rho_{AB} - \rho_{AB}^{\dagger})O_AO_B]$$

Interactions between A and B

$$\frac{1}{\dim H_{A}} \| \rho_{AB} - \rho_{AB}^{\dagger} \|_{2} \leq \frac{\left| \langle [O_{A}(0), O_{B}(t)] \rangle \right|}{\| O_{A} \|_{2} \cdot \| O_{B} \|_{2}} \leq \| \rho_{AB} - \rho_{AB}^{\dagger} \|_{2}$$

A similar situation occurs when two CFTs are interacting.

$$\rho_{AB}^{\dagger} \neq \rho_{AB}$$



Indeed, we can easily find

 $H_{tot} \neq H_{CFT1} \otimes H_{CFT2}$

because A and B are causally connected.

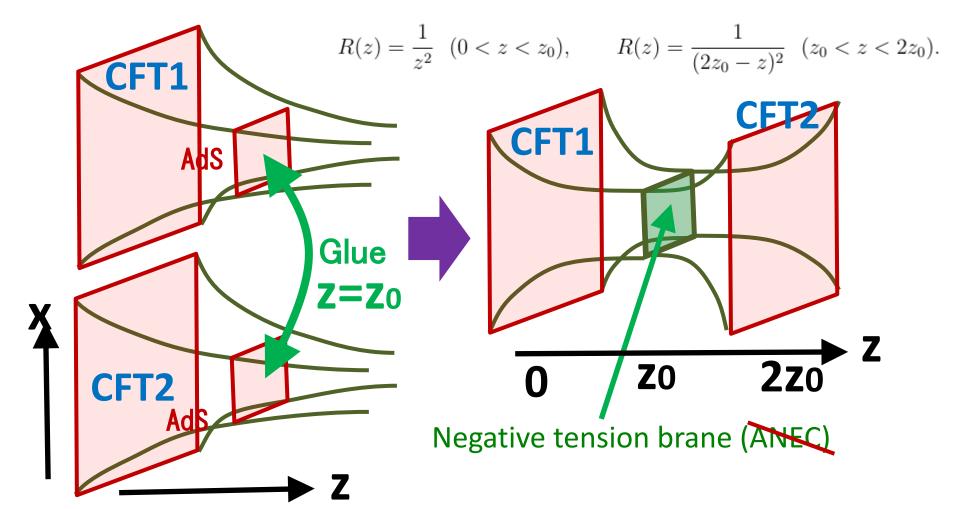
This motivates us to consider traversable AdS wormholes.

4 Traversable AdS Wormhole

(4-1) General setup

Consider a simple model of traversable AdS wormhole:

$$ds^{2} = R(z) \left(dz^{2} + \sum_{i=0}^{d-1} dx_{i}^{2} \right),$$

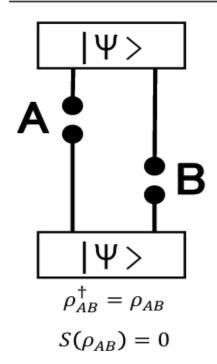


Two constructions of AdS Traversable wormhole

Non-traversable

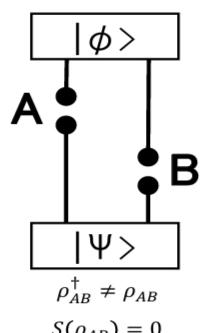
[Maldacena 01]

Thermofield double



[Kawamoto-Maeda -Nakamura-TT 2025]

<u>Model A(Janus)</u>

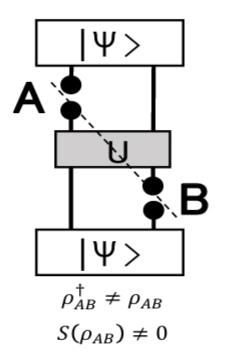


- $S(\rho_{AB})=0$
- No interactions between A and B
- H is non-hermitian

Traversable

[Gao-Jafferis-Wall 2016, Maldacena-Qi 2018, Harvey-Jensen 2023, Lin's talk]

Model B (Double trace)



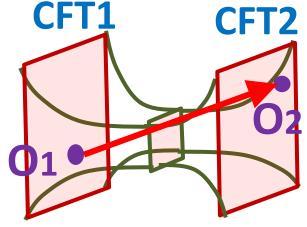
- **♦** ∃Interactions between A and B
- H is hermitian

Lorentzian 2pt functions of scalar operators

In Lorentzian signature x_0 =it, the scalar two point function <0102> gets divergent at $-t^2 + x^2 + 4z_0^2 = 0$ as two points are null separated:

$$\langle \mathcal{O}_1(t,x)\mathcal{O}_2(0,0)\rangle \sim \frac{1}{(-t^2+x^2+4z_0^2)^{d+2\nu-\frac{1}{2}}}.$$

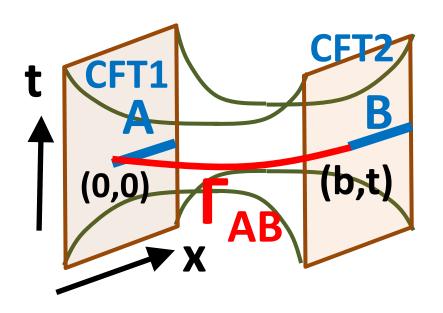
$$\nu = \sqrt{m^2 + \frac{d^2}{4}}$$



A characteristic feature of traversable AdS black hole

Pseudo entropy (Time-like entanglement entropy)

How does SAB look like?



When
$$t^2 < b^2 + 4z_0^2$$
.

$$S_{AB} = \frac{c}{3} \log \frac{\frac{b^2 - t^2}{4} + z_0^2}{\epsilon z_0}.$$

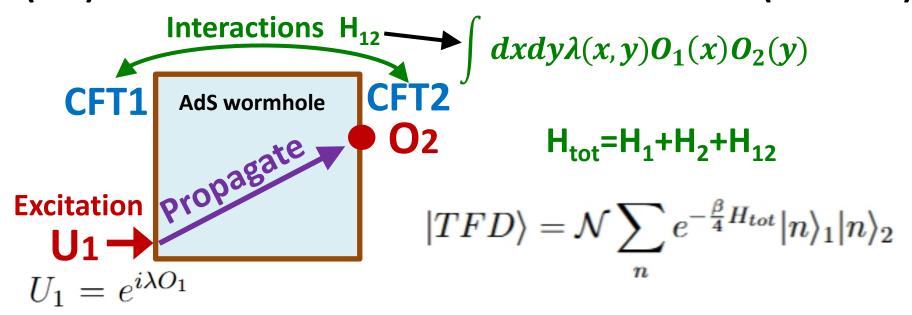
When
$$t^2 > b^2 + 4z_0^2$$

$$S_{AB} = \frac{c}{3} \log \frac{\frac{t^2 - b^2}{4} - z_0^2}{\epsilon z_0} + \frac{c}{3} \pi i.$$

T_{AB} can be time-like in a traversable wormhole.

 S_{AB} becomes complex valued because $\rho_{AB}^{\dagger} \neq \rho_{AB}$. Thus, S_{AB} should be regarded as pseudo entropy.

(4-2) Double trace deformation of External BH (Model B)



$$[\rho_{12}]_{ab}^{a'b'} = \langle TFD|e^{it_2H_{tot}}|b'\rangle\langle b|e^{-i(t_2-t_1)H_{tot}}|a'\rangle\langle a|e^{-it_1H_{tot}}|TFD\rangle,$$

$$\rho_2 = \text{Tr}_1 \left[e^{-it_2H_{tot}} \left(e^{it_1H_{tot}} U_1 e^{-it_1H_{tot}} \right) |TFD\rangle\langle TFD| \left(e^{it_1H_{tot}} U_1^{\dagger} e^{-it_1H_{tot}} \right) e^{it_2H_{tot}} \right]$$

$$\langle O_2 \rangle = \text{Tr}[O_2 \rho_2]$$

 $\simeq \langle TFD|O_2|TFD\rangle + i\lambda \langle TFD|[O_1(t), O_2]|TFD\rangle + O(\lambda^2).$

Non-vanishing due to the interactions ↔

$$ho_{{\scriptscriptstyle A}{\scriptscriptstyle B}}^\dagger
eq
ho_{{\scriptscriptstyle A}{\scriptscriptstyle B}}$$

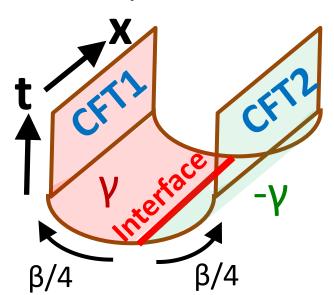
(4-3) Wormhole via Janus deformation (Model A)

[Harper-Kawamoto-Maeda-Nakamura-TT, in preparation]

Janus deformation = asymmetric exactly marginal [Bak-Gutperle-Hirano 03] perturbations in a pair of CFTs

$$S_{\text{CFT1}} = S_{\text{CFT}}^{(0)} + \gamma \int dx^d O_1(x)$$

$$S_{\text{CFT2}} = S_{\text{CFT}}^{(0)} - \gamma \int dx^d O_2(x)$$



- ◆We consider the TFD state of the doubled CFT for d=2.
- In the standard Janus deformation, γ is real valued.
 We will extend γ to imaginary values.

Explicit construction from Janus deformation

We start with 3D Janus BH solutions in [Bak-Gutperle-Hirano 2007].

The model is given by the 3d gravity action

$$I = \frac{1}{16\pi G_N} \int d^3x \left[R - g^{ab} \partial_a \phi \partial_b \phi + 2 \right].$$

The solution ansatz looks like

γ is Janus deformation Parameter.

$$ds^{2} = f(\mu)(d\mu^{2} + ds_{AdS2}^{2}), \quad \phi = \phi(\mu).$$

$$ds_{AdS2}^{2} = -d\tau^{2} + r_{0}^{2}\cos^{2}\tau d\theta^{2}$$

$$\frac{d\phi(\mu)}{d\mu} = \frac{\gamma}{\sqrt{f(\mu)}},$$

$$\frac{df(\mu)}{d\mu} = \sqrt{f(4f^2 - 4f + 2\gamma^2)}.$$

μ=-μ0 μ=μ0 CFT1 CFT2

We now extend this solution to **imaginary** γ .

$$\mu_0 = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-\lambda x^2)}},$$

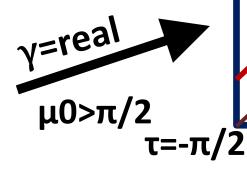
$$\lambda = \frac{1 - \sqrt{1 - 2\gamma^2}}{1 + \sqrt{1 - 2\gamma^2}}.$$
 $\tau = \pi/2$

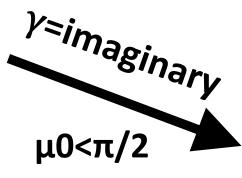
 $\mu = -\mu 0$

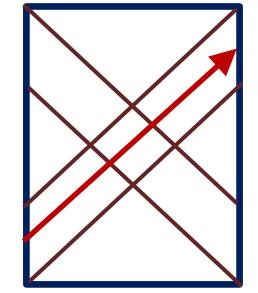
 $\mu = \mu 0$



BTZ black hole $\mu 0=\pi/2$

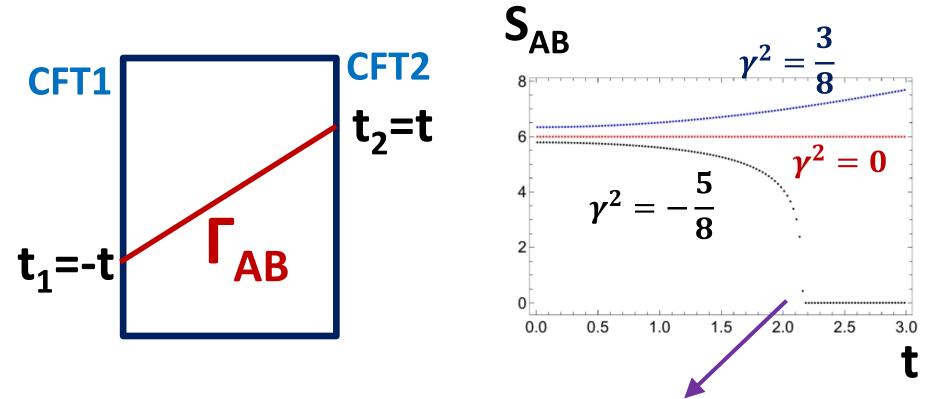






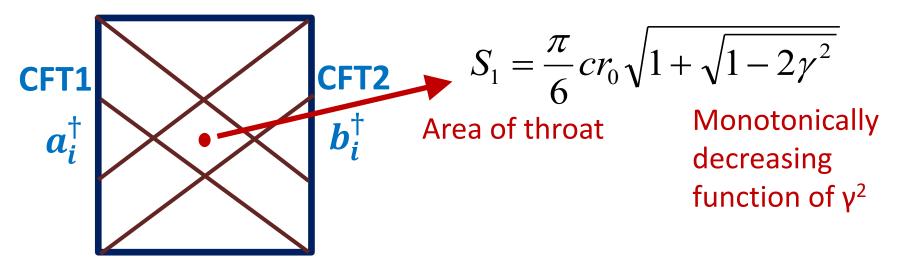
Traversable wormhole

Holographic pseudo entropy for half lines



Γ_{AB} becomes light-like! The characteristic feature of traversable wormhole.

(Pseudo) Entanglement entropy between CFT1 and CFT2



In the dual CFT, this is dual to the PE/EE in the deformed TFD state:

$$|\text{TFD}(\beta, \gamma)\rangle = \tilde{\mathcal{N}} \exp \left[\sum_{i=1}^{\infty} e^{-\frac{\beta}{2}E_i} \left(\sin 2\theta \ a_i^{\dagger} b_i^{\dagger} + \cos 2\theta \left((a_i^{\dagger})^2 - (b_i^{\dagger})^2 \right) \right) \right] |0\rangle$$

$$|\text{TFD}(\beta, \gamma)| = \tilde{\mathcal{N}}\langle 0| \exp \left[\sum_{i=1}^{\infty} e^{-\frac{\beta}{2}E_i} \left(\sin 2\theta \ a_i b_i + \cos 2\theta \left((a_i)^2 - (b_i)^2 \right) \right) \right] \ \theta \equiv \frac{\pi}{4} + \gamma$$

 S_1 becomes its maximum at $\theta=\pi/4$ (i.e. no deformation) and decreases as γ^2 gets larger. For imaginary γ , it increases. This is consistent with the gravity dual.

Why traversable?

The Hamiltonians H_1 and H_2 of CFT1 and CFT2 for γ =imaginary becomes non-Hermitian:

$$H_1 = H_0 + \gamma V$$
, $H_2 = H_0 + \gamma^* V$, such that $H_1^{\dagger} = H_2$

They have different eigen-vectors with complex eigen-values:

$$H_1|n_+\rangle = E_n|n_+\rangle, \qquad H_2|n_-\rangle = E_n^*|n_-\rangle,$$

$$\langle n_+ | H_2 = \langle n_+ | E_n^*, \quad \langle n_- | H_1 = \langle n_- | E_n \rangle,$$

where we introduce their (Hermitian) conjugations by $\left|n_{\pm}
ight>^{\dagger}=\left\langle n_{\pm}
ight|.$

They satisfy
$$\langle n_{\mp} | m_{\pm} \rangle = \delta_{n,m}, \qquad \sum |n_{\pm} \rangle \langle n_{\mp}| = 1.$$

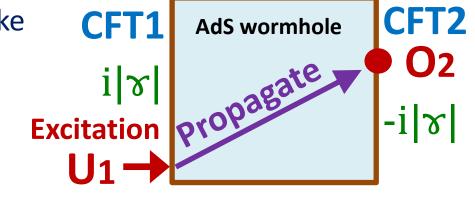
This motivates us to define the modified conjugation ‡ by

$$\left|\left\langle n_{+}\left|O\right|m_{-}\right\rangle^{*}=\left\langle m_{+}\left|O^{\dagger}\right|n_{-}\right\rangle .\right|$$

The initial and final TFD state look like

$$|\text{TFD}\rangle = \sum_{n} e^{-\frac{\beta}{4}(H_1 + H_2)} |n_+\rangle_1 |n_+\rangle_2 ,$$

$$\langle \overline{\text{TFD}} | = \sum_{n} \langle n_{-} |_{1} \langle n_{-} |_{2} e^{-\frac{\beta}{4}(H_{1} + H_{2})}$$
.



The density matrix $\rho = |\text{TFD}\rangle\langle\overline{\text{TFD}}|$ is not Hermitian $\rho^\dagger \neq \rho$. However, it satisfies $\rho^\ddagger = \rho$, implying \ddagger is good for the conjugation.

An observer in CFT2 probes the state:

$$\rho_2 = e^{-it_2H_-^{(2)}} \text{Tr}_1 \left[(e^{-it_1H_+^{(1)}} e^{i\alpha O^{(1)}} e^{it_1H_+^{(1)}}) |TFD\rangle \langle \overline{TFD}| (e^{-it_1H_+^{(1)}} e^{-i\alpha O^{(1)\ddagger}} e^{it_1H_+^{(1)}}) \right] e^{it_2H_-^{(2)}}.$$

When the CFT1 is excited by $\,U_1=e^{i\alpha O^{(1)}}$, the CFT2 observer sees

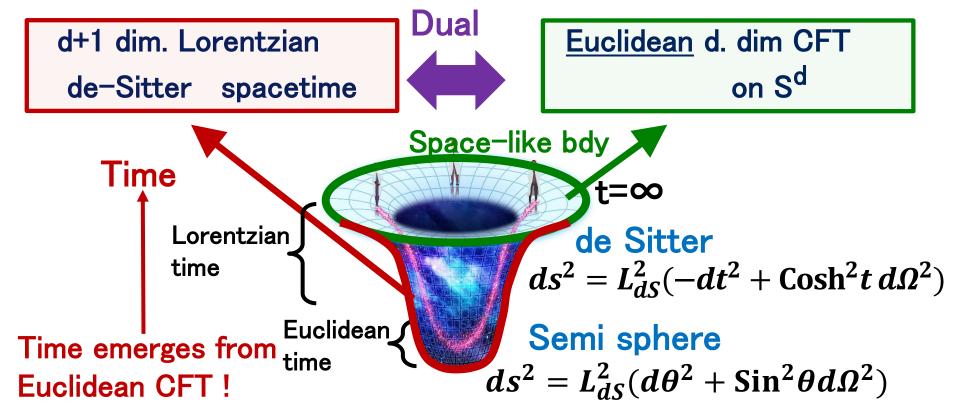
$$\langle O^{(2)}(t_2) \rangle = \text{Tr}[\rho_2 O^{(2)}]$$

 $\simeq \langle \overline{TFD} | O^{(2)} | TFD \rangle + i\alpha \langle \overline{TFD} | \left(O^{(2)}(t_2) O^{(1)}(t_1) - O^{(1)\dagger}(t_1) O^{(2)}(t_2) \right) | TFD \rangle,$

We have $[O_1,O_2]=0$, but this is non-vanishing!

⑤ dS/CFT correspondence

A Sketch of dS/CFT [Strominger 2001, Witten 2001, Maldacena 2002,....]



$$\Psi[dS gravity] = Z[CFT]$$

Central charge (even d → imaginary)

$$c \sim \frac{L_{AdS}^{d-1}}{G_N} = i^{d-1} \cdot \frac{L_{dS}^{d-1}}{G_N}$$

Why dS/CFT is much more difficult than AdS/CFT?

[1] Dual Euclidean CFTs should be exotic and non-unitary!

A "standard" Euclidean CFTs is dual to gravity on hyperbolic space.

e.g. dS3/CFT2 \rightarrow Imaginary valued central charge $c \approx i \frac{3L_{dS}}{2G_N}$!

Unsual conjugation: $(L_n)^\dagger = (-1)^{n+1}\widetilde{L_n}$ [Doi-Ogawa-Shimyo-Suzuki-TT 2024]

[2] Time should emerge from Euclidean CFT!

From a usual Euclidean CFT, a space-like direction will emerge as RG scale.

How does a *time-like direction emerge* from a Euclidean CFT ?

[3] "Entanglement entropy" looks complex valued!

Extremal surfaces in dS which end on its boundary are time-like!

Non-unitary CFT dual of 3 dim. dS

[Hikida-Nishioka-Taki-TT, 2021-22, Chen-Hikida-Taki-Uetoko 2022-24,...]

Large c limit of $SU(2)_k \times SU(2)_k WZW$ model (a 2dim. CFT)

= Einstein Gravity on 3 dim. de Sitter (radius L_{ds})

Level
$$k \approx -2 + \frac{4iG_N}{L_{dS}}$$
 Central charge $c = \frac{3k}{k+2} \approx i\frac{3L_{dS}}{2G_N}$
$$Z[S^3, R_j] = |S_j^0|^2 \approx e^{\frac{\pi L_{dS}}{2G_N}\sqrt{1-8G_N E}}$$
 CFT partition function De Sitter Entropy

This non-unitary CFT is equivalent to the Liouville CFT

at
$$b^{-2} \approx \pm \frac{i}{4G_N}$$
 $I_{CFT}[\phi] = \int d^2x \left[\frac{1}{4\pi} (\partial_a \varphi \partial_a \varphi) + \underline{\mu} e^{2b\varphi} \right]$. [Hikida-Nishioka-Taki-TT, 2022]

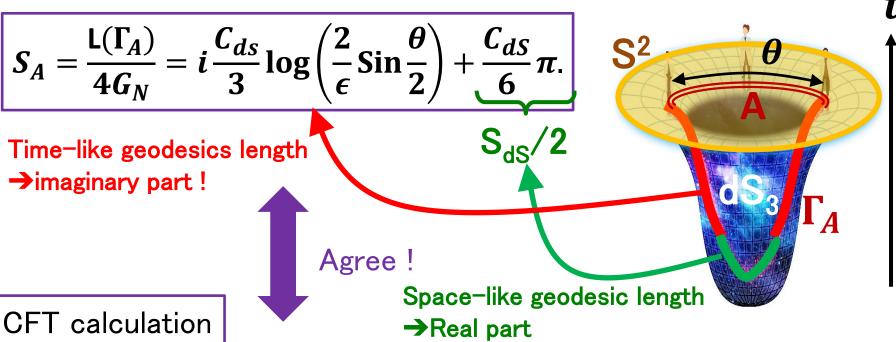
The same Liouville CFT appears in [Verlinde-Zhang 2024] via DSSYK.

→Why two different holographic constructions lead to the same CFT?

Holographic Entanglement Entropy in dS3/CFT2?

[Hikida-Nishioka-Taki-TT 2022, Doi-Harper-Mollabashi-Taki-TT 2022]

In dS3/CFT2, the geodesic Γ_A becomes time-like and we find:



$$S_A = \frac{C_{CFT}}{6} \log \left[\frac{\sin^2 \frac{\theta}{2}}{\tilde{\epsilon}^2} \right]$$
, by setting Complex valued entropy!

(should not be EE!)

$${\cal C}_{CFT}=i{\cal C}_{dS}$$
 and $\widetilde{arepsilon}=iarepsilon=ie^{-t_{\infty}}$.

We argue it is more properly considered as pseudo entropy (PE).

This is because the reduced density matrix ρ_A is not Hermitian!

$$\rho_{A} = \begin{cases} \langle \varphi | & \sim \int_{S_{+}^{2}}^{D} D \varphi \, e^{-I_{CFT}[\varphi]} \\ & D_{offerent states} \end{cases}$$

$$|\psi\rangle \sim \int_{S_{-}^{2}}^{D} D \varphi \, e^{-I_{CFT}[\varphi]}$$

2D CFT on the space with the metric: $h_{ab}=e^{2\phi}\delta_{ab}$,

$$I_{CFT}[\phi] = \frac{c_{ds}}{24\pi} \int d^2x [(\partial_a \phi)^2 + e^{2\phi}].$$

$$\rightarrow \rho_A \neq \rho_A^{\dagger}$$

Note: the emergent time coordinate = imaginary part of PE.

6 Pseudo Entropy and Entanglement Distillation

(6-1) Distillation from Post-selection

Let us focus on the following example with real valued PE:

$$|\psi\rangle = \cos\theta_1|00\rangle + \sin\theta_1|11\rangle,$$
$$|\varphi\rangle = \cos\theta_2|00\rangle + \sin\theta_2|11\rangle.$$

$$\tau_A^{\psi|\varphi} = \frac{\cos\theta_1 \cos\theta_2 |0\rangle\langle 0| + \sin\theta_1 \sin\theta_2 |1\rangle\langle 1|}{\cos(\theta_1 - \theta_2)}$$

$$S\left(\tau_{A}^{\psi|\varphi}\right) = \frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} \cdot \log\frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} - \frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})} \cdot \log\frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})}$$

$$(|\psi\rangle)^{\otimes M} = (\cos\theta_1|00\rangle + \sin\theta_1|11\rangle)^{\otimes M}$$

$$= \sum_{k=0}^{M} (c_1)^{M-k} (s_1)^k \sum_{a=1}^{\mathsf{MC}_k} |P(k), a\rangle_{\mathsf{R}} |P(k), a\rangle_{\mathsf{B}}$$

$$c_1 \equiv \cos\theta_1, s_1 \equiv \sin\theta_1$$

$$k = 0: \quad |P(0), 1\rangle = |00 \cdots 0\rangle$$

$$k = 1: \quad |P(1), 1\rangle = |10 \cdots 0\rangle, |P(1), 2\rangle = |01 \cdots 0\rangle, \cdots$$

Projection to maximally entangled states with **Log[MCk]** entropy:

 $MC_k=M!/(M-k)!k!$

$$\Pi_k = \sum_{a=1}^{\mathsf{MC}_k} |P(k), a\rangle \langle P(k), a|$$

probability:
$$p_k = \langle \varphi | \Pi_k | \psi \rangle / \langle \varphi | \psi \rangle = \frac{(c_1 c_2)^{M-k} (s_1 s_2)^k}{(c_1 c_2 + s_1 s_2)^M} \cdot \mathbf{MCk}$$

of Distillable Bell pairs:
$$N = \sum_{k=0}^{M} p_k$$
 Log[MCk] $\approx M \cdot S(\tau_A^{\psi|\varphi})$!

(6-2) SVD entropy [Parzygnat-Taki-Wei-TT 2023]

Motivation: Improve PE so that (i) it become real and non-negative and (ii) it has a better LOCC interpretation.

SVD entropy
$$S_{SVD}\left(\tau_A^{\psi|\varphi}\right) = -\mathrm{Tr}\left[|\tau_A^{\psi|\varphi}|\cdot\log|\tau_A^{\psi|\varphi}|\right].$$
 here, $|\tau_A^{\psi|\varphi}| \equiv \sqrt{\tau_A^{\dagger\psi|\varphi}\tau_A^{\psi|\varphi}}$

- This is always non-negative and is bounded by log dim HA.
- From quantum information theoretic viewpoint, this is the number of Bell pairs distilled from the intermediate state:

$$\tau_{A}^{\psi|\varphi} = \mathbf{U} \cdot \mathbf{\Lambda} \cdot \mathbf{V}, \qquad \frac{\langle \varphi | \mathbf{V}^{\dagger} \sum_{k} | \mathbf{EPR}_{k} \rangle \langle \mathbf{EPR}_{k} | \mathbf{U}^{\dagger} | \psi \rangle}{\langle \varphi | \mathbf{V}^{\dagger} \mathbf{U}^{\dagger} | \psi \rangle} = \sum_{k} p_{k} = 1$$

$$S_{SVD} \approx \sum_{k} p_{k} \cdot \# \text{ of Bell Pairs in } | EPR_{k} \rangle$$

Holography → New insights into quantum matter, quantum computation and quantum cryptography Universe = Collection of Qubits (=Strings?) Does gravitational spacetime emerge from qubits? → New approach to quantum gravity

In this talk we emphasized the use of pseudo entropy (PE).

- PE has a clear gravity dual via holography.
- PE is a useful geometric probe of non-Hermitian dynamics.
 e.g. time-like entanglement, wormholes, and de Sitter spaces...

Imaginary part of Pseudo entropy→Emergence of Time (but what is quantum informational meaning of PE?)

Thank you!

♦ Calculation of two point functions in AdS wormhole

Consider a scalar field Φ in the bulk:

$$I_{\text{scalar}} = \int dz d^dx \left[\frac{1}{z^{d-1}} \left((\partial_z \Phi)^2 + (\partial_x \Phi)^2 \right) + \frac{m^2}{z^{d+1}} \Phi^2 \right].$$

$$\Phi'' - \frac{d-1}{z} \Phi' - \left(k^2 + \frac{m^2}{z^2} \right) \Phi = 0.$$
Source
$$\Phi(z) = \alpha_1 z^{d-\Delta} + \beta_1 z^{\Delta} + \dots$$

$$\Delta = \frac{d}{2} + v, \quad v = \sqrt{m^2 + \frac{d^2}{4}}$$

$$2\mathbf{Z} \mathbf{Q} \mathbf{Z} \mathbf{Q} \mathbf{Q}$$

$$ds^2 = R(z) \left(dz^2 + \sum_{i=1}^{d-1} dx_i^2 \right), \quad R(z) = \frac{1}{z^2} \ (0 < z < z_0), \qquad R(z) = \frac{1}{(2z_0 - z)^2} \ (z_0 < z < 2z_0).$$

Two point functions read

$$\begin{split} P(\nu,k,z&=z_{0},d) \coloneqq \langle \mathcal{O}_{1}(k)\mathcal{O}_{1}(-k)\rangle = -\frac{\beta_{1}}{\alpha_{1}} \\ &= \frac{\Gamma(1-\nu)}{\Gamma(1+\nu)} \left(\frac{k}{2}\right)^{2\nu} \frac{kz_{0}I_{\nu-1}(kz_{0})I_{-\nu}(kz_{0}) + (kz_{0}I_{1-\nu}(kz_{0}) + (d-2\nu)I_{-\nu}(kz_{0}))I_{\nu}(kz_{0})}{(d-2\nu)I_{\nu}(kz_{0})^{2} + 2kz_{0}I_{\nu-1}(kz_{0})I_{\nu}(kz_{0})} \\ Q(\nu,k,z&=z_{0},d) \coloneqq \langle \mathcal{O}_{1}(k)\mathcal{O}_{2}(-k)\rangle = \frac{\beta_{2}}{\alpha_{1}} \\ &= \frac{\Gamma(1-\nu)}{\Gamma(1+\nu)} \left(\frac{k}{2}\right)^{2\nu} \frac{2\sin\nu\pi}{\pi} \frac{1}{(d-2\nu)I_{\nu}(kz_{0})^{2} + 2kz_{0}I_{\nu-1}(kz_{0})I_{\nu}(kz_{0})}. \end{split}$$

In the UV limit $(kz_0 \gg 1)$, we obtain

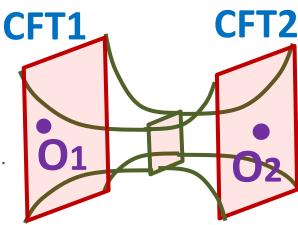
$$\langle \mathbf{O1O1} \rangle \ P(\nu, k, z = z_0, d) \simeq \frac{\Gamma(1 - \nu)}{\Gamma(1 + \nu)} \left(\frac{k}{2}\right)^{2\nu}$$

$$\langle \mathbf{O1O2} \rangle \ Q(\nu, k, z = z_0, d) \simeq \frac{2 \sin \nu \pi \Gamma(1 - \nu)}{\Gamma(1 + \nu)} \left(\frac{k}{2}\right)^{2\nu} e^{-2kz_0}.$$

In the IR limit $(kz_0 \ll 1)$, we obtain

(0101)
$$P(\nu, k, z = z_0, d) \simeq \frac{d}{d + 2\nu} \frac{1}{z_0^{2\nu}} + O(kz_0)$$

(0102) $Q(\nu, k, z = z_0, d) \simeq \frac{2\nu}{d + 2\nu} \frac{1}{z_0^{2\nu}} + O(kz_0).$



♦ Details of double trace deformation (Model B)

Double Trace

Deformation

Consider a double trace deformation between CFT1 and CFT2

$$\int dx dy \lambda(x, y) O_1(x) O_2(y)$$
$$\lambda(x, y) = \int d^d k e^{ik(x-y)} \lambda(k)$$

The double trace deformation is dual to the change of boundary condition in AdS:

$$J^{(1)} = \alpha^{(1)} - \lambda \beta^{(2)}, \quad J^{(2)} = \alpha^{(2)} - \lambda \beta^{(1)}$$
 [Witten 2001]

Here the scalar field in each AdS is expanded as follows:

$$\Phi^{(i)} \simeq \alpha^{(i)} z_i^{d-\Delta} + \beta^{(i)} z_i^{\Delta} \quad (z_1, z_2 \to 0)$$

$$\frac{\beta^{(i)}}{\alpha^{(i)}} = -G(k), \quad G_p(k) \equiv \frac{\Gamma(1-\nu)}{\Gamma(1+\nu)} \left(\frac{k}{2}\right)^{2\nu}$$

In this way we can compute the two point functions:

$$\langle \mathcal{O}_1(k)\mathcal{O}_1(-k)\rangle = \langle \mathcal{O}_2(k)\mathcal{O}_2(-k)\rangle = \frac{G}{1-\lambda^2 G^2},$$

 $\langle \mathcal{O}_1(k)\mathcal{O}_2(-k)\rangle = \frac{\lambda G^2}{1-\lambda^2 G^2}.$

Two point functions in the simple model of traversable WH is reproduced by setting

$$\begin{split} G(k) &= \frac{P(k)^2 - Q(k)^2}{P(k)} = \left\{ \begin{array}{l} \frac{\Gamma(1-\nu)}{\Gamma(1+\nu)} \left(\frac{k}{2}\right)^{2\nu} & (kz_0 \gg 1) \\ \frac{d^2 - 4\nu^2}{(d+2\nu)d} \cdot \frac{1}{z_0^{2\nu}} & (kz_0 \ll 1). \end{array} \right. \\ \lambda(k) &= \frac{Q(k)}{P(k)^2 - Q(k)^2} = \left\{ \begin{array}{l} \frac{2\sin\pi\nu\Gamma(1+\nu)}{\Gamma(1-\nu)} \left(\frac{k}{2}\right)^{-2\nu} e^{-2kz_0} & ((kz_0 \gg 1)) \\ \frac{2(d+2\nu)\nu}{d^2 - 4\nu^2} \cdot z_0^{2\nu} & (kz_0 \ll 1). \end{array} \right. \end{split}$$
 UV regularized DT deformation

Note: In order to reproduce two point functions for all operators, we need to perform the double trace deformations for all primaries.

♦ A toy model of Janus deformed CFT dual

For a realization of AdS3/CFT2 Janus solution, consider AdS3 × S3 × 4 in IIB string theory, dual to the D1-D5 CFT given by the symmetric product CFT: $Sym\left[\left(T^4\right)^{\mathcal{Q}_1\mathcal{Q}_5}\right]$.

The Janus deformation is performed by shifting the compactification radius $R \rightarrow R1$ in CFT1 and $R \rightarrow R2$ in CFT2.

Below we consider a toy model of Janus CFT based on the c=1 free compactified scalar φ (radius R).



$$\tan \theta = \frac{R_2}{R_1}$$

Janus deformation

$$\theta = \frac{\pi}{4} + \gamma.$$

To probe its dual "geometry", compute the two point function <V1V2>

$$V_1 = e^{i\lambda_+ \phi_L^{(1)}(\tau_1) + i\lambda_- \phi_R^{(1)}(\tau_1)},$$

$$V_2 = e^{i\mu_+\phi_L^{(2)}(\tau_2) + i\mu_-\phi_R^{(2)}(\tau_2)},$$

In the high temperature limit,

$$\lambda_{\pm} = \frac{n}{R_1} \pm \frac{wR_1}{2}, \quad \mu_{\pm} = \frac{n}{R_2} \mp \frac{wR_2}{2}.$$

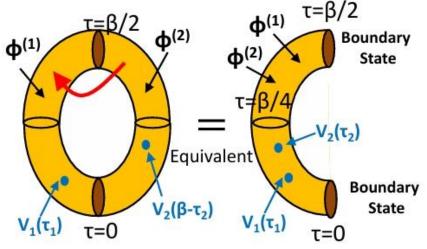
$$\langle V_1(\tau_1)V_2(\tau_2)\rangle$$

$$\simeq \left[\frac{\beta}{\pi} \cdot \sin\left(\frac{2\pi\tau_1}{\beta}\right)\right]^{\left[\left(\frac{n}{R_1}\right)^2 - \left(\frac{wR_1}{2}\right)^2\right]\cos 2\theta} \cdot \left[\frac{\beta}{\pi} \cdot \sin\left(\frac{2\pi\tau_2}{\beta}\right)\right]^{\left[-\left(\frac{n}{R_2}\right)^2 + \left(\frac{wR_2}{2}\right)^2\right]\cos 2\theta}$$

$$\cdot \left[\frac{\beta}{\pi} \cdot \sin \left(\frac{\pi(\tau_1 + \tau_2)}{\beta} \right) \right]^{-2 \left[\frac{n^2}{R_1 R_2} + \frac{w^2 R_1 R_2}{4} \right] \sin 2\theta}$$

To evaluate the two point function, we employed the doubling trick of interface CFT.

[Bachas-de Boer-Dijkgraaf-Ooguri 2001, Sakai-Saoth 2008]



TFD Picture

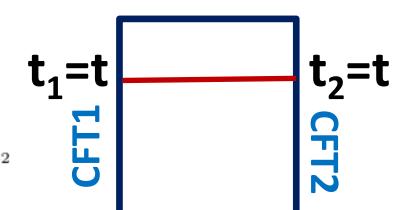
Folded Picture

$$\tau_1 = \frac{\beta}{4} + it,$$

$$\tau_2 = \frac{\beta}{4} + it$$

Case 1
$$_1 = \frac{\beta}{4} + it, _2 = \frac{\beta}{4} + it$$

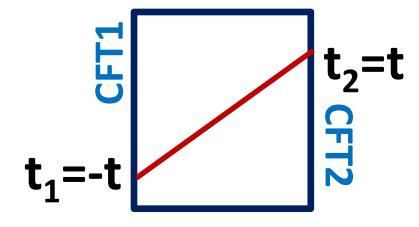
$$\langle V_1(\tau_1)V_2(\tau_2)\rangle \propto \left[\frac{\beta}{\pi} \cdot \cosh\frac{2\pi}{\beta}t\right]^{-\Delta_1-\Delta_2}$$



Case 2
$$au_1 = \frac{\beta}{4} + it, au_2 = \frac{\beta}{4} - it.$$

$$\langle V_1(t_1)V_2(t_2)\rangle \propto \left[\frac{\beta}{\pi} \cdot \cosh\frac{2\pi}{\beta}t\right]^{\eta}$$

$$\eta = -\frac{(R_1^2 - R_2^2)^2}{(R_1^2 + R_2^2)R_1R_2} \cdot \left(\frac{n^2}{R_1R_2} + \frac{w^2R_1R_2}{4}\right)$$



η<0 for real γ η>0 for imaginary γ

Qualitatively agree with the gravity dual