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① Introduction

The relations between holography 

and quantum information implies that 

the space coordinate in gravity may 

emerge from quantum entanglement.

B

A

Planck length

What about the time coordinate ?

Relevant questions 

[Q1]  How the time in de Sitter spaces emerge from CFTs ?

[Q2]  What is a “time-like vesion” of entanglement ?  
➔ causal connection vs entanglement ?

[Q3]  Is traversability of wormholes related to quantum information ?

A

B

Time



In this talk, we will argue that these are directly related to 
a generalization of quantum entanglement to the case where 
the density matrices are not hermitian.

The generalization of entanglement entropy to the above cases 
is called  pseudo entropy.

[Ref:  arXiv:2005.13801
Yoshifumi Nakata (YITP, Kyoto), Yusuke Taki (YITP, Kyoto)
Kotaro Tamaoka (Nihon U.), Zixia Wei (Harvard U.)  and TT]



Quantum Entanglemenｔ (QE)

Two subsystems A and B in a total system 

are quantum mechanically correlated.

     

Pure States:  Non-zero QE ⇔ 

 

       
2

1
   :state  Bell   e.g. 

B
+=

ABA
Bell

.   21 BAAB


Direct Product

Minimal Unit of 
Entanglement

The best (or only) measure of quantum entanglement 

for pure states is known to be entanglement entropy (EE).

EE ＝ # of Bell Pairs between A and B

A B



Divide a quantum system into two subsystems A and B:

Define the reduced density matrix by

The entanglement entropy        is defined by the von-Neumann entropy 

.   BAtot HHH =

Entanglement entropy (EE) in HEP/CMP 

BA =B AA
Continuum 
Limit ε→0ε

Quantum Many-body Systems Quantum Field Theories (QFTs)

B



Setup

LO (=Local Operations)

Projection measurements and unitary trfs. 

which act either A or B only.

CC (=Classical Communications between A and B)
  

⇒These operations are combined and called LOCC.

A basic example of LOCC:   quantum teleportation 

   BAtot HHH =

A B

A B

Entanglement Entropy (EE) in Quantum Information



A B

Entangled in a very 
complicated way

A B
LOCC 

N Bell pairs
Distillation

( ۧ|Ψ 𝐴𝐵ۦΨ|)
⊗𝑀

⊗𝑀

( ۧ|Ψ 𝐴𝐵ۦΨ|)
⊗𝑀 ⇒ ۧ(|Bell Bell|)⊗𝑁ۦ

𝑆 𝜌𝐴 = lim
𝑀→∞

𝑁

𝑀
Well-known fact in QI:

𝜌𝐴 ≡ Tr𝐵[ ۧ|Ψ 𝐴𝐵ۦΨ|]

[Bennett-Bernstein-Popescu-Schumacher 95,  Nielsen 98]



Holographic Entanglement Entropy
[Ryu-TT 2006, Hubeny-Rangamani-TT 2007]

A generic Lorentzian asymptotic AdS spacetime is dual to 
a time dependent state |Ψ(t)〉 in the dual CFT.

The time-dependent entanglement entropy 

is computed from an extremal surface area: 

𝜌𝐴 𝑡 = Tr𝐵[| ۧΨ(𝑡) Ψۦ 𝑡 |] 𝑆𝐴 𝑡 .

𝑆𝐴 𝑡 = MinΓ𝐴ExtΓ𝐴
𝐴(Γ𝐴)

4𝐺𝑁

.  ~  and  AA AA =
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Question:  More general formula ?

Minimal areas in Euclidean time dependent     
asymptotically AdS spaces 

=  What kind of QI quantity in CFT ?

The answer is Pseudo Entropy ! 

[Nakata-Taki-Tamaoka-Wei-TT, 2020]
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(2-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states         and         , and define

the transition matrix:

We decompose the Hilbert space as

and introduce the reduced transition matrix:

ۧ|𝜓 ۧ|𝜑

𝜏
𝜓|𝜑

=
ۧ|𝜓 |𝜑ۦ

|𝜑ۦ ۧ𝜓
.

𝜏𝐴
𝜓|𝜑

= Tr𝐵 𝜏
𝜓|𝜑

.   BAtot HHH =

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

=
1

1 − 𝑛
logTr 𝜏𝐴

𝜓|𝜑 𝑛
.

𝑆 𝜏𝐴
𝜓|𝜑

= −Tr 𝜏𝐴
𝜓|𝜑

log𝜏𝐴
𝜓|𝜑

.Pseudo Entropy

Renyi Pseudo Entropy

② Pseudo Entropy and Holography



(2-2) Basic Properties of Pseudo Entropy (PE)

• In general,            is not Hermitian. Thus PE is complex valued.

More generally,  we call               pseudo entropy when      

is not  hermitan.                 

• If either        or        has no entanglement (i.e. direct product state) , 
then

• We can show

• We can show

ۧ|𝜓 ۧ|𝜑

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 0.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐴
𝜑|𝜓 †

.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐵
𝜓|𝜑

.

→“SA=SB”
This implies a local holographic formula ! 

𝜏𝐴
𝜓|𝜑

𝑆 𝜏𝐴 𝜏𝐴



(2-3) Pseudo Entropy and Quantum Phases
[Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21]

Properties of Pseudo entropy in QFTs

[1]  Area law

[2]  The difference

is negative if       and       are in a same phase.

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟐|𝟏

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐

 terms),subleading(
A)Area(

~
1

+

−dAS



PE in a 2 dim. free scalar
when we change its mass.

ۧ|𝜓1 ۧ|𝜓2

What happen if they belong to different phases ?
Can ΔS be positive ?



Quantum Ising Chain with a transverse magnetic field

Ψ1→ vacuum of H(J1)
Ψ2→ vacuum of H(J2)
(We always set h=1)

J1=1/2 J1=1 J1=2

J<1   Paramagnetic Phase
J>1 Ferromagnetic Phase

We find
when Ψ1 and Ψ2 are in different phases !

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟐|𝟏

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐 > 𝟎
J2 J2 J2

N=16, NA=8



Heuristic Interpretation

Two gapped phases are 
separated by a gapless phase.

CFT !

Ψ1

Ψ2

A

PE is enhanced ! ∆𝑺 > 𝟎
AdS Dual of 
Gapless Interface

ΓA

The gapless interface (edge state) also occurs in topological orders.
➔Topological pseudo entropy 

[Nishioka-Taki-TT 2021, Caputa-Purkayastha-Saha-Sułkowski 2024]



𝑆 𝜏𝐴
𝜓|𝜑

= MinΓ𝐴
𝐴(Γ𝐴)

4𝐺𝑁

(2-4) Holographic Pseudo Entropy (HPE) Formula
[Nakata-Taki-Tamaoka-Wei-TT, 2020]

Below we will apply HPE to Lorentzian spacetimes, 
where non-Hermitian density matrices show up.
Key question: “Is the time coordinate encoded in QI quantity ?” 
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In Euclidean time dependent setups, 
the minimal surface area coincides 
with the pseudo entropy.

Initial 
State

Final 
State



③ Time-like Entanglement Entropy

Consider a time-like version of entanglement entropy 

by rotating the subsystem A into a time-like one:

CFT on an infinite line Holographic calculation

𝑺𝑨 =
𝑪

𝟑
𝐥𝐨𝐠

𝑳

𝜺

𝑺𝑨 =
𝑪

𝟑
𝐥𝐨𝐠

𝑻

𝜺
+
𝝅

𝟔
𝒊𝑪

𝑳 → 𝒊𝑻
𝑳

𝑻

A

A

[Doi-Harper-Mollabashi-Taki-TT 2022]

T/2

-T/2

/2

/2

Poincare AdS Global AdS

Imaginary 
part ! [More generally we need to consider 

extremal surfaces in complexified AdS
as shown in Heller-Ori-Sereantes 23]



We can find an essentially same phenomenon in a more standard 
setup of entanglement entropy for double intervals:

u1

u2

v1

v2

e.g.  Free Dirac fermion CFT  c=1

If this interval 
is time-like, 
entropy gets 
complex valued !

The imaginary part of TEE is explained by the time-like geodesic in AdS.

           is not Hermitian            A and B are causally connected 

No longer time slice !

[Kawamoto-Maeda-Nakamura-TT 25
refer also to Parzygnat-Fullwood 22]

𝝆𝑨𝑩

TEE is a special example of pseudo entropy.



A Toy Example: Coupled Harmonic Oscillators

T

ABAB  †

0)( ABS  mixed=AB

Purification needs 
extra Hilbert space



Recently, a clear theorem was provided by [Milekhin-Adamska-Preskill 2025] 

 
2

AB

22
2

AB

)(),0(

dim

1 ††
AB

BA

BA

AB

A OO

tOO

H
 −


−

  ])Tr[()(),0( BAB OOtOO AABBA

† −=

( ) =
''

AB

ba

ab


Interactions between A and B



Indeed, we can easily find 

because A and B are 
causally connected. 

𝑯𝒕𝒐𝒕 ≠ 𝑯𝑪𝑭𝑻𝟏 ⊗𝑯𝑪𝑭𝑻𝟐

A similar situation occurs when two CFTs are interacting.

ABAB  †

This motivates us to consider traversable AdS wormholes.



AdS

AdS

z

Glue

Negative tension brane (ANEC)

Consider a simple model of 
traversable AdS wormhole:

CFT1

CFT2

CFT1
CFT2

x

z

0 z0 2z0

④ Traversable AdS Wormhole

(4-1) General setup

z=z0



Two constructions of AdS Traversable wormhole

 No interactions 
between A and B

 H is non-hermitian

 ∃Interactions 
between A and B

 H is hermitian

Non-traversable
Traversable

[Maldacena 01]

[Kawamoto-Maeda
-Nakamura-TT 2025]

[Gao-Jafferis-Wall 2016, 
Maldacena-Qi 2018, 
Harvey-Jensen 2023,  Lin’s talk]



In Lorentzian signature x0=it,  the scalar two point function <O1O2>
gets divergent at                                 as two points are null separated:    04 2

0

22 =++− zxt

A characteristic feature of 
traversable AdS black hole

Lorentzian 2pt functions of scalar operators

CFT2

O1
O2

CFT1
ν = 𝑚2 +

𝑑2

4



Pseudo entropy (Time-like entanglement entropy) 

A B
CFT1

CFT2

How does SAB look like ?

ΓAB
(0,0)

x

t

(b,t) When

When

SAB becomes complex valued because                      .
Thus, SAB should be regarded as pseudo entropy.

ABAB  †

ΓAB can be time-like in a traversable wormhole.



(4-2)  Double trace deformation  of External BH (Model B)

CFT1 CFT2

U1

O2

Excitation

AdS wormhole

Interactions  H12

Htot=H1+H2+H12

Non-vanishing due to the interactions ABAB  †

න𝒅𝒙𝒅𝒚𝝀(𝒙,𝒚)𝑶𝟏 𝒙 𝑶𝟐(𝒚)



Janus deformation  =  asymmetric exactly marginal        

perturbations in a pair of CFTs

(4-3)  Wormhole via Janus deformation (Model A)

)(1

)0(

CFT1CFT xOdxSS d

+= 

)(2

)0(

CFT2CFT xOdxSS d

−= 

We consider the TFD state of the doubled CFT for d=2.

In the standard Janus deformation,  γ is real valued.
We will extend γ to imaginary values. 

γ -γ

x
t

β/4β/4

[Harper-Kawamoto-Maeda-Nakamura-TT, in preparation]

[Bak-Gutperle-Hirano 03]



Explicit construction from Janus deformation

We start with  3D Janus BH solutions in [Bak-Gutperle-Hirano 2007].

γ is Janus 

deformation

Parameter.

CFT1 CFT2

μ=μ0μ=-μ0

We now extend this solution to imaginary γ.



Traversable
wormhole

BTZ black hole

Janus 
black hole

μ=-μ0 μ=μ0

τ=-π/2

τ=π/2

μ0>π/2

μ0<π/2
μ0=π/2

C
FT1 C

FT
2

γ=0



Holographic pseudo entropy for half lines

t1=-t

t2=t
CFT1 CFT2

SAB

t

𝜸𝟐 =
𝟑

𝟖

𝜸𝟐 = −
𝟓

𝟖

𝜸𝟐 = 𝟎

ΓAB

ΓAB  becomes light-like !
The characteristic feature of 
traversable wormhole.



(Pseudo) Entanglement entropy between CFT1 and CFT2

Area of throat Monotonically 
decreasing 
function of γ2

In the dual CFT, this is dual to the PE/EE in the deformed TFD state:

S1 becomes its maximum at θ=π/4 (i.e. no deformation) and 
decreases as γ2 gets larger.  For imaginary γ, it increases.
This is consistent with the gravity dual.

CFT1 CFT2

𝒂𝒊
† 𝒃𝒊

†

2

01 211
6




−+= crS

𝜃 ≡
𝜋

4
+ 𝛾



The Hamiltonians H1 and H2 of CFT1  and CFT2 for γ=imaginary 
becomes non-Hermitian:

They have different eigen-vectors with complex eigen-values:

where we introduce their (Hermitian) conjugations by

They satisfy 

This motivates us to define the modified conjugation ‡ by

Why traversable ?

21

*

0201 such that    ,      , H HVHHVHH =+=+= †

,       , *

21 −−++ == nEnHnEnH nn

.  = nn
†

.1  ,,  == 

n

mn nn   mn  

. 
*

−+−+ = nOmmOn ‡

,         , 1

*

2 nn EnHnEnHn −−++ ==



CFT1 CFT2

U1

O2

Excitation

AdS wormhole

.   TFD

,   TFD

)(
4

21

21

)(
4

21

21

HH

n

n

HH

enn

nne

+−

−−

++

+−





=

=





The initial and final TFD state look like

TFDTFD=  †

 =‡
The density matrix                                    is not Hermitian               . 

However, it satisfies               , implying ‡ is good for the conjugation.

i|ɤ|
-i|ɤ|

An observer in CFT2 probes the state:

When the CFT1 is excited by                           ,  the CFT2 observer sees 

We have [O1,O2]=0,  but this is non-vanishing !



A Sketch of dS/CFT [Strominger 2001, Witten 2001, Maldacena 2002,….]

d+1 dim. Lorentzian                         Euclidean d. dim CFT                 

de-Sitter   spacetime on Sd

Dual

Time

Ψ[dS gravity]＝Z [CFT]

t=∞

de Sitter 

Space-like bdy

Lorentzian 
time

Euclidean 
time

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (−𝒅𝒕𝟐 +𝐂𝐨𝐬𝐡𝟐𝒕𝒅𝜴𝟐)

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (𝒅𝜽𝟐 + 𝐒𝐢𝐧𝟐𝜽𝒅𝜴𝟐)

Semi sphere Time emerges from 
Euclidean CFT !

⑤ dS/CFT correspondence

𝒄~
𝑳𝑨𝒅𝑺
𝒅−𝟏

𝑮𝑵
= 𝒊𝒅−𝟏 ∙

𝑳𝒅𝑺
𝒅−𝟏

𝑮𝑵

Central charge (even d ➔ imaginary)



Why dS/CFT is much more difficult than AdS/CFT ?

[1] Dual Euclidean CFTs should be exotic and non-unitary !

A “standard” Euclidean CFTs  is dual to  gravity on hyperbolic space.

e.g.  dS3/CFT2 ➔ Imaginary valued central charge                     !                          

[2] Time should emerge from Euclidean CFT !

From a usual Euclidean CFT, a space-like direction will emerge as RG scale.

How does a time-like direction emerge from a Euclidean CFT ? 

[3]  “Entanglement entropy” looks complex valued !

Extremal surfaces in dS which end on its boundary are time-like !

𝒄 ≈ 𝒊
𝟑𝑳𝒅𝑺
𝟐𝑮𝑵

[Doi-Ogawa-Shimyo-Suzuki-TT 2024]Unsual conjugation: 𝑳𝒏
† = −𝟏 𝒏+𝟏෪𝑳𝒏



Non-unitary CFT dual of 3 dim. dS
[Hikida-Nishioka-Taki-TT, 2021-22, Chen-Hikida-Taki-Uetoko 2022-24,..]

Large c limit of SU(2)k×SU(2)-k WZW model (a 2dim. CFT)

= Einstein Gravity on 3 dim. de Sitter (radius 𝑳𝒅𝒔)

𝒄 =
𝟑𝒌

𝒌 + 𝟐
≈ 𝒊

𝟑𝑳𝒅𝑺
𝟐𝑮𝑵

k≈ −𝟐 +
𝟒𝒊𝑮𝑵

𝑳𝒅𝑺

Central chargeLevel

𝒁 𝑺𝟑, 𝑹𝒋 = 𝑺𝒋
𝟎 𝟐

≈ 𝒆
𝝅𝑳𝒅𝒔
𝟐𝑮𝑵

𝟏−𝟖𝑮𝑵𝑬

CFT partition function De Sitter Entropy

This non-unitary CFT is equivalent to  the Liouville CFT 

at .
NG

i
b

4

2 −

The same Liouville CFT appears in [Verlinde-Zhang 2024] via DSSYK.
→Why two different holographic constructions lead to the same CFT ?

𝑰𝑪𝑭𝑻 𝝓 = න𝒅𝟐𝒙
𝟏

𝟒𝝅
𝝏𝒂𝝋𝝏𝒂𝝋 + 𝝁𝒆𝟐𝒃𝝋 .

complex ![Hikida-Nishioka-Taki-TT, 2022]



Holographic Entanglement Entropy in dS3/CFT2 ?

In dS3/CFT2, the geodesic 𝚪𝑨 becomes time-like and we find:

𝑺𝑨 =
L(𝚪𝑨)

𝟒𝑮𝑵
= 𝒊

𝑪𝒅𝒔
𝟑
𝐥𝐨𝐠

𝟐

𝝐
𝐒𝐢𝐧

𝜽

𝟐
+
𝑪𝒅𝑺
𝟔
𝝅.

Time-like geodesics length
➔imaginary part !

SdS/2

[Hikida-Nishioka-Taki-TT 2022, Doi-Harper-Mollabashi-Taki-TT 2022]

𝜽
𝒕

Space-like geodesic length 
➔Real part

S2

dS3 𝚪𝑨

by setting 𝑺𝑨 =
𝑪𝑪𝑭𝑻
𝟔

𝐥𝐨𝐠
𝐒𝐢𝐧𝟐

𝜽
𝟐

෤𝜺𝟐
,

𝑪𝑪𝑭𝑻 = 𝒊𝑪𝒅𝑺  and ෤𝜺 = 𝒊𝜺 = 𝒊𝒆−𝒕∞ .

CFT calculation

Agree !

Complex valued entropy !
(should not be EE !)

A



This is because the reduced density matrix 𝝆𝑨 is not Hermitian ! 

~න𝑫𝝋𝒆−𝑰𝑪𝑭𝑻[𝝋]

➔ 𝝆𝑨 ≠ 𝝆𝑨
†

A

S2

𝝆𝑨=

A

A

ۧ|𝝍

|𝝋ۦ

Different states !

Note: the emergent time coordinate = imaginary part of PE. 

We argue it is more properly considered as pseudo entropy (PE).

𝑺+
𝟐

~න𝑫𝝋𝒆−𝑰𝑪𝑭𝑻[𝝋]

𝑺−
𝟐

𝑰𝑪𝑭𝑻 𝝓 = 𝒊
𝑪𝒅𝒔
𝟐𝟒𝝅

න𝒅𝟐𝒙[(𝝏𝒂𝝓)
𝟐 + 𝒆𝟐𝝓].

2D CFT on the space with the metric: 𝒉𝒂𝒃 = 𝒆𝟐𝝓𝜹𝒂𝒃,



(6-1) Distillation from Post-selection

Let us focus on  the following example with real valued PE:

ۧ|𝜓 = cos𝜃1 ۧ|00 + sin𝜃1 ۧ|11 ,

ۧ|𝜑 = cos𝜃2 ۧ|00 + sin𝜃2 ۧ|11 .

𝜏𝐴
𝜓|𝜑

=
cos𝜃1 ۧcos𝜃2|0 |0ۦ + sin𝜃1sin𝜃2 ۧ|1 |1ۦ

cos(𝜃1 − 𝜃2)

𝑆 𝜏𝐴
𝜓|𝜑

=

−
cos𝜃1cos𝜃2
cos(𝜃1−𝜃2)

∙ log
cos𝜃1cos𝜃2
cos(𝜃1−𝜃2)

−
sin𝜃1sin𝜃2
sin(𝜃1−𝜃2)

∙ log
sin𝜃1sin𝜃2
sin(𝜃1−𝜃2)

⑥ Pseudo Entropy and Entanglement Distillation



ۧ(|𝜓 )⊗𝑀 = (cos𝜃1 ۧ|00 + sin𝜃1 ۧ|11 )⊗𝑀

= σ𝑘=0
𝑀 (𝑐1)

𝑀−𝑘 (𝑠1)
𝑘 σ𝑎=1 ۧ|𝑃 𝑘 , 𝑎 ۧ|𝑃 𝑘 , 𝑎

Projection to maximally entangled states 
with                       entropy:  

MCk

ۧ𝑘 = 0: |𝑃 0 , 1 = ۧ|00⋯0
𝑘 = 1: ۧ|𝑃 1 , 1 = ۧ|10⋯0 , ۧ|𝑃 1 , 2 = ۧ|01⋯0 , ⋯

Log[MCk]

Π𝑘 =෍
𝑎=1

ۧ|𝑃 𝑘 , 𝑎 𝑃ۦ 𝑘 , 𝑎|

MCk

𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲: 𝑝𝑘= |𝜑|Π𝑘ۦ ۧ𝜓 |𝜑ۦ/ ۧ𝜓 =
(𝑐1𝑐2)

𝑀−𝑘 (𝑠1𝑠2)
𝑘 

(𝑐1𝑐2 + 𝑠1𝑠2)
𝑀

∙MCk

MCk=M!/(M-k)!k!

# 𝐨𝐟 𝐃𝐢𝐬𝐭𝐢𝐥𝐥𝐚𝐛𝐥𝐞 𝐁𝐞𝐥𝐥 𝐩𝐚𝐢𝐫𝐬: 𝐍 = σ𝒌=𝟎
𝑴 𝒑𝒌 ・Log[MCk]

≈ 𝑴 ∙ 𝑺 𝝉𝑨
𝝍|𝝋

  !

𝑐1 ≡ cos𝜃1, 𝑠1 ≡ sin𝜃1

A

BA



(6-2)  SVD entropy

𝑆𝑆𝑉𝐷 𝜏𝐴
𝜓|𝜑

= −Tr |𝜏𝐴
𝜓|𝜑

∙ log 𝜏𝐴
𝜓|𝜑

| .

here,  |𝜏𝐴
𝜓|𝜑

| ≡ 𝜏𝐴
†𝜓|𝜑

𝜏𝐴
𝜓|𝜑

[Parzygnat-Taki-Wei-TT 2023]

• This is always non-negative and is bounded by log dim HA.  

• From quantum information theoretic viewpoint, this is the 
number of Bell pairs distilled from the intermediate state:

Motivation:  Improve PE so that (i) it become real and non-negative 
and (ii) it has a better LOCC interpretation. 

SVD entropy

𝜏𝐴
𝜓|𝜑

=U・Λ・V, 1
 UV
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==


k k

k kk
p




††

††

kEPRin  Pairs Bell of# k kSVD pS



Key ideas

 Universe ＝ Collection of Qubits (=Strings?)

Holography

Emergence

⑦ Conclusions

Is gravity the fastest “quantum computer” ?
➔New insights into quantum matter, quantum computation
and quantum cryptography

Does gravitational spacetime emerge from qubits？
➔New approach to quantum gravity

In this talk we emphasized the use of pseudo entropy (PE).
• PE has a clear gravity dual via holography.
• PE is a useful geometric probe of non-Hermitian dynamics.
e.g.  time-like entanglement, wormholes, and de Sitter spaces…

Imaginary part of Pseudo entropy➔Emergence of Time
(but what is quantum informational meaning of PE ?) 



Thank you !
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 Calculation of two point functions in AdS wormhole

Consider a scalar field Φ in the bulk:

Source 
J1

〈O1〉

Source 
J2

〈O2〉
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Δ +=+=



Two point functions read

CFT1 CFT2

O1 O2

〈O1O1〉

〈O1O2〉

〈O1O1〉

〈O1O2〉

exp decay



 Details of double trace deformation (Model B)

AdS

AdS

z

Double Trace 
Deformation

න𝒅𝒙𝒅𝒚𝝀(𝒙,𝒚)𝑶𝟏 𝒙 𝑶𝟐(𝒚)

CFT1

CFT2
x

Consider a double trace deformation 
between CFT1 and CFT2

The double trace deformation is dual to 
the change of boundary condition in AdS:

[Witten 2001]

Here the scalar field in each AdS is expanded as follows: 



In this way we can compute the two point functions:

Two point functions in the simple model of traversable WH
is reproduced by setting

Note:  In order to reproduce two point functions for all operators,
we need to perform the double trace deformations for all primaries.

UV regularized
DT deformation



For a realization of  AdS3/CFT2 Janus solution, consider

AdS3×S3×4 in IIB string theory, dual to the D1-D5 CFT

given by the symmetric product CFT:                                   .

The Janus deformation is performed by shifting 

the compactification radius R➔R1 in CFT1  and R➔R2 in CFT2.

Below we consider a toy model of  Janus CFT based on 

the c=1 free compactified scalar φ (radius R).   

 A toy model of Janus deformed CFT dual

 51)(T Sym 4 QQ

1

)1(

R



2

)2(

R


.

4
 

ndeformatio Janus




 +=



To probe its dual “geometry”, compute the two point function <V1V2> 

To evaluate the two point function,
we employed the doubling trick 
of interface CFT.

In the high temperature limit,

[Bachas-de Boer-Dijkgraaf-Ooguri 2001,  
Sakai-Saoth 2008]



t1=t t2=t

C
FT

1 C
FT2

t1=-t

t2=t

C
FT

1

C
FT2

Case 2

Case 1

η<0 for real γ
η>0 for imaginary γ

Qualitatively agree with the gravity dual
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