

Entanglement-efficient distributed quantum computing (DQC)^[a,b] with embedding-enhanced distributing processes 03.July.2024 @ QST(Tainan)

<u>Jun-Yi Wu^[1]</u>, Pablo Andres-Martinez^[2], Tim Forrer^[3], Daniel Mills^[2], Kosuke Matsui^[3], Luciana Henaut^[2], Kentaro Yamamoto^[2], Akihito Soeda^[4], Ross Duncan^[2], and Mio Murao^[3]

[1] Tamkang University, 151 Yingzhuan Rd., New Taipei City 25137, Taiwan, ROC

[2] Quantinuum, Terrington House, 13-15 Hills Road, Cambridge CB2 1NL, UK

[3] University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

[4] National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

[a] J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martínez, D. Mills, L. Henaut, and M. Murao, Quantum, 7:1196, 2023
[b] P. A.-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto, M. Murao, M. and R. Duncan, arXiv:2305.14148, 2023 (to appear in QST)

It is time to distribute quantum computing

Different approaches for distributed quantum computation

[*] K. Mitarai, and K. Fujii, Quantum 5, 388 (2021), K. Mitarai, and K. Fujii, NJP, 23, 2, 023021 (2021);
[\$] C. Piveteau, and D. Sutter, IEEE Transactions on Information Theory, 70, 4, 2734 - 2745 (2024);

Entanglement cost in entanglement-assisted distributed quantum computing

Two entanglement pairs = 2 ebits

Quantum telegating^[2]: e.g. EJPP protocol^[3]

One entanglement pairs = 1 ebit

[1] C. Bennett, et. al., PRL, 70, 1895-1899 (1993)
[2] "Teledata" and "Telegate" were coined by R. Meter et al, ACM (JETC), 3, 4, 1-23 (2008)
[3] J. Eisert, et al., PRA, 62, 052317 (2000)

DQC with quantum telegating (EJPP protocol) [1]

4-qubit UCC circuit for variational eigenvalue solver [1,2]

[1] A. G. Taube and R. J. Bartlett, International Journal of Quantum Chemistry, 106(15):3393–3401, (2006);
[2] A. Peruzzo, J. McClean, et al., Nature Communications, 5(1), (2014)

• EJPP protocol^[1] \Rightarrow Packing process

۲

Embedding-enhanced distributing processes^[1]

• Packing graph over multiple QPUs^[1,2]

Entanglement-efficient distributed quantum computation

J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martínez, D. Mills, L. Henaut, and M. Murao, Quantum, 7:1196, 2023
 P. A.-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto, M. Murao, M. and R. Duncan, arXiv:2305.14148, 2023

Embedding-enhanced distributing processes as the building blocks of DQC

₩

Packing graph

Packing graph

Extension of EJPP protocol: packing process

EJPP protocol

Definition (Packing process) $\mathcal{P}_{q,e}[K_{AB}] \coloneqq E_{q,e} \circ K_{AB} \circ S_{q,e}$

Theorem (Merging of packing processes). Two sequential entanglement-assisted packing process $\mathcal{P}_{q,e}[K_1]$ and $\mathcal{P}_{q,e}[K_2]$ rooted on the same qubit q assisted by an auxiliary qubit e can be merged into one packing process.

$$\mathcal{P}_{q,e}[K_2]\mathcal{P}_{q,e}[K_1] = \mathcal{P}_{q,e}[K_2K_1]$$

Packing graph Embedding-enhanced distributing

Distributing processes

Definition (Distributing process). A unitary U is q-rooted distributable (or distributable on q) over two local systems A|B, if there exists a q-rooted entanglement-assisted process with a local kernel with respect to A|B,

$$U = \mathcal{P}_{q,e}[K_A \otimes K_B].$$

The process $\mathcal{P}_{q,e}[K_A \otimes K_B]$ is called a *q*-rooted distributing process of U.

Distributing processes are the building blocks of ENT-assisted DQC

Nested distributing processes through embedding

Packing graph

Distributing enhanced by embedding

X

Definition (Embedding process).

q

q'

A unitary U is q-rooted embeddable with respect to a bipartition A|B, if there exists a corresponding kernels $\mathcal{B}_q(U)$,

$$\mathcal{B}_q(U) = (L_{i,A} \otimes L_{i,B}) V_i (K_{i,A} \otimes K_{i,B}),$$

where $L_{i,A}$ and $K_{i,A}$ and $L_{i,B}$ and $K_{i,B}$ are local operations, such that

$$U = \mathcal{P}_{q,e}[\mathcal{B}_q(U)].$$

The kernel $\mathcal{B}_q(U)$ describes a q-rooted embedding rule. The process $\mathcal{P}_{q,e}[\mathcal{B}_q(U)]$ is a q-rooted eassisted embedding process of U.

Distributable packets: the architecture of embedding-enhanced distribution

Let $\mathcal{V}_{q,T} = \{(q, t): t \in T\}$ be a set of gate nodes associated with nonlocal gates.

Theorem (Embedding rules) Let \mathbb{B} be the set of embedding rules.

H ·

 $\mathbb{B} = \{$

Definition (distributable packets). The set $\mathcal{V}_{q,T}$ is a distributable \mathbb{B} -packet, if 1. the U_t is q-rooted distributable for all $t \in T$, 2. the unitary between each pair of depths $\{t_1, t_2\} \subseteq T$ is \mathbb{B} -embeddable.

Packing graph

Which packets to distribute?

The algorithm

for embedding-enhanced distribution of quantum computing

Minimum vertex covering of packing graphs

Packing graph

Embedding-enhanced distributed quantum computing

Packing algorithm

Minimum vertex covering of packing graphs

Implementation of embedding-enhanced DQC

Packing graph

Packing algorithm

Multipartite DQC

Minimum vertex covering of packing graphs

Incompatible packing and conflict edges

Packing algorithm

Multipartite DQC

Minimum vertex covering of packing graphs

Packing graph

Incompatible packing and conflict edges

The packing graph and conflict graph of a circuit fully describe its distributability, embeddability and their compatibility Packing algorithm

Minimum vertex covering of packing graphs

Packing graph

4-qubit UCC circuit for variational eigenvalue solver [1,2]

[1] A. G. Taube and R. J. Bartlett, Int. J. of Quantum Chemistry, 106(15):3393–3401, (2006); A. Peruzzo, J. McClean, et al., Nature Communications, 5(1), (2014)

[2] J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martínez, D. Mills, L. Henaut, and M. Murao, Quantum, 7:1196, 2023

Minimum vertex covering of packing graphs

Packing graph

Application in a 4-qubit unitary-coupled-cluster (UCC) circuits

The 4-qubit UCC circuit has 64 nonlocal 2-qubit gates.

The entanglement cost of the UCC circuit is only $|\mathbb{P}_{MVC}| + |\mathbb{K}_{MVC}| = 17$ ebits, which saves 47 ebits

Minimum vertex covering of packing graphs

Comparison with other protocols for DQC implementation of UCC circuits

For all N-qubit UCC circuits, the embedding-enhance distributing shows significant saving of entanglement.

[*] G* simple and G* LP are the algorithms provided in: Sundaram, Gupta, and Ramakrishnan, Efficient Distribution of Quantum Circuits, 35th International Symposium on Distributed Computing (DISC 2021) , Vol. 209

Embedding-enhanced DQC

over heterogeneous multi-QPU networks

Packing algorithm

Embedding-enhanced DQC over heterogeneous computing networks

Embedding-enhanced DQC over multiple QPUs

Embedding-enhanced DQC over heterogeneous computing networks

Embedding-enhanced DQC over multiple QPUs^[*]

Embedding-enhanced distributing \Rightarrow Packing graph

Packing graph \Rightarrow Minimum vertex cover & Steiner tree

[*] P. A.-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto, M. Murao, M. and R. Duncan, arXiv:2305.14148, 2023

• Embedding-enhanced distributing processes^[1]

• Packing graph over multiple QPUs^[1,2]

• Minimum vertex cover & Steiner tree of packing graph^[2]

Entanglement-efficient distributed quantum computation

J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martínez, D. Mills, L. Henaut, and M. Murao, Quantum, 7:1196, 2023
 P. A.-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto, M. Murao, M. and R. Duncan, arXiv:2305.14148, 2023 (to appear in QST)

Outlooks

Optimality of embeddingenhanced distribution

- Embedding with detached gate
- Case study for optimality

Embedding-enhanced distribution of multi-qubit gates (e.g. CCZ)

• Embedding rules for general *n*-qubit gates

Scalability enhancement of entanglement-assisted DQC

- for homogeneous networks^[3]
- for heterogeneous networks

Entanglement-efficient distributed quantum computation

J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martínez, D. Mills, L. Henaut, and M. Murao, Quantum, 7:1196, 2023
 P. A.-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto, M. Murao, M. and R. Duncan, arXiv:2305.14148, 2023 (to appear in QST)
 S.-H. Hu, G. Biswas, and J.-Y. Wu, arXiv:2405.10942

Consortium in Photonic Quantum Computing

Open positions:

Jun-Yi Wu

Rui-Kuang Lee, Ming-Chang Lee

O Delft Circuits

Projects:

PhDs

Postdocs

Yen-Hung Chen

- Verification theory in photonic quantum computing.
- Experiment in integrated photonic quantum computing.

