Diquarks in lattice QCD

Anthony Francis

The Fifteenth Particle Physics Phenomenology Workshop (PPP15)

National Taiwan University, Taipei

Taiwan, 22.10.2024

Heavy spectrum today - a success story turned challenge to theory

Multi-decade-long theory-success-streak broken

- Many new, unexpected, states observed.
- $\circ\,$ esp. 4-/5-quark states not expected before (\sim 12).
- $\circ\,$ Also, many predicted quark model states not seen.

Limited explanations in theory

- QCD often approximated in models
- many extensions possible, many interpretations, some times contradictory statements
- insights through lattice QCD calculations? What role could effective QCD degrees of freedom play?

Diquarks - an attractive concept

"The concept of diquarks is almost as old as the quark model, and actually predates QCD [1]" → arXiv:2203.16583; [1] PR 155, 1601 (1967)

• Diquarks in QCD: Formally the diquark interpolating operator may be written as

$$D_{\Gamma} = q^c C \Gamma q'$$

Consequences for their properties:

- \circ "good" $(\bar{\mathbf{3}}_F,\bar{\mathbf{3}}_c,J^P=0^+)$ configuration
- $\circ~$ quarks in "good" diquarks attract each other
- large mass splitting in good, bad and not-even-bad channels
- $\circ \ \ {\sf HQSS-limit:} \ \ {\sf When} \ \ q \to Q = \infty \ \ {\sf a} \ \ {\sf diquark} \\ {\sf acts} \ {\sf as} \ {\sf an} \ {\sf antiquark} \ \ [QQ] \leftrightarrow \ \bar{Q}.$
- Well founded in QCD with successful applications in many hadrons.
- $\circ~$ Combination of good diquark and HQSS was motivation for study of T_{bb} on the lattice.
- $\circ~$ In this case: All model predictions observed.
- But: What really is the role of the diquarks? What are their properties and details?

 \rightsquigarrow c,C=charge conjugation, Γ acts on Dirac space

J^P	С	F	Ор: Г
0+	3	3	$\gamma_5, \gamma_0\gamma_5$
1^{+}	3	6	γ_i, σ_{i0}
0-	3	6	11, γ_0
1^{-}	3	3	$\gamma_i \gamma_5, \sigma_{ij}$
0 	ud 66		m ² (l) - m ²
	0000		m _{w,lat} (c) - m _{w,phys}

0.075

-200

Diquarks on the lattice - a gauge invariant probe

• A problem for the lattice - and others, incl. experiment - is that diquarks are colored.

- $\circ\,$ They are not-gauge invariant and not directly accessible as QCD observables.
- \circ Could fix a gauge, but then properties are gauge-dependent (masses, sizes,...)

 \rightsquigarrow lattice and Dyson-Schwinger, see e.g. [15-20] in 2106.09080

• Alternative: Exploit "effective" mass-decomposition of a hadron

$$C_{\Gamma}(t)\sim \exp\left[-t\left(m_{D_{\Gamma}}+m_{Q}+\mathcal{O}(m_{Q}^{-1})
ight)
ight]$$

 \rightsquigarrow t \rightarrow large, m_Q \rightarrow large

- \circ With a static spectator quark Q ($m_Q \rightarrow \infty$), it cancels in mass differences.
- Diquark properties can be exposed in a gauge-invariant way.

 \rightsquigarrow hep-lat/0510082, hep-lat/0509113, hep-lat/0609004, arxiv:1012.2353

• Lattice implementation:

• Embed the diquark in a static-light-light baryon correlation function

$$C_{\Gamma}(t) = \sum_{\vec{x}} \left\langle [D_{\Gamma}Q](\vec{x},t) \ [D_{\Gamma}Q]^{\dagger}(\vec{0},0) \right\rangle$$

 \rightsquigarrow static quark=Q and $D_{\Gamma} = q^{c}C\Gamma q$

 \rightsquigarrow here: flavor combinations ud , $\ell \mathit{s}, \mathit{ss}$

 \circ Static-light mesons may also be used for diquark-quark differences

$$C^M_{\Gamma}(t) = \sum_{ec x} \left\langle [ar Q \Gamma q](ec x,t) \; [ar Q \Gamma q]^\dagger(ec 0,0)
ight
angle$$

Diquark spectroscopy

Mass difference 1

Mass differences of two qq'Q baryons (one with good diquark):

$$C^{qq'Q}_{\Gamma}(t)-C^{qq'Q}_{\gamma_5}(t)$$

 $\rightsquigarrow Q$ drops out

→ diquark-diquark mass difference

Mass difference 2

Mass differences of a qq'Q baryon and a light-static meson:

$$C^{qq'Q}_{\Gamma=\gamma_5}(t)-C^{q'ar{Q}}_{\gamma_5}(t)$$

 $\rightsquigarrow Q$ drops out \rightsquigarrow diquark-quark mass difference

 \rightsquigarrow baryon pictures from Hosaka, 2013

"These mass differences are fundamental characteristics of QCD, which should be measured carefully on the lattice." \rightarrow Jaffe, arXiv:hep-ph/0409065; Phys. Rept. 409 (2005)

A step further: Diquark structure

We can access (good) diquark structure information through density-density correlations:

$$C_{\Gamma}^{dd}(\vec{x}_{1},\vec{x}_{2},t) = \left\langle \mathcal{O}_{\Gamma}(\vec{0},2t) \ \rho(\vec{x}_{1},t)\rho(\vec{x}_{2},t) \ \mathcal{O}_{\Gamma}^{\dagger}(\vec{0},0) \right\rangle$$

$$\stackrel{\sim}{\longrightarrow} \mathcal{O}_{\Gamma} = q^{c}C\Gamma q \text{ and } \rho(\vec{x},t) = \bar{q}(\vec{x},t)\gamma_{0}q(\vec{x},t)$$

$$\stackrel{\sim}{\longrightarrow} t_{m} = (t_{snk} + t_{src})/2 \text{ to minimize excited states}$$

Main tool: Correlations between two light quarks' relative positions to the static quark

Note, when S and r_{ud} fixed, distance between static quark Q and light quarks q, q' is

- Minimized for $\phi = \pi$, possible disruption due to Q is largest
- Maximized for $\phi = \pi/2$, possible disruption due to Q is smallest

Good diquarks - Attraction, radius and spatial properties

Mode 2: Radial/Tangential shape

As opposed to before $R \neq fixed$:

- $\phi = \pi$: radial correlation, size $\rightsquigarrow r_0^{\parallel}$
- $\phi = \pi/2$: tangential, size $\rightsquigarrow r_0^{\perp}$
- $r_0^{\perp}/r_0^{\parallel}$ gives information on shape: $\circ = 1$, spherical
 - $\circ~\neq$ 1, prolate/oblate

Goals:

- Probe *J* = 0 nature of good diquark (spherical, *S*-wave expectation)
- Diquark polarisation through heavy quark?

Results

Research and calculation roadmap:

- 1. spectrum: probe mass differences
- 2. spatial correlations: study attraction and special status of the good diquark
- 3. structure: estimate size and shape of the good diquark

Lattice setup (public PACS-CS gaugefields)

•
$$n_f = 2 + 1$$
 full QCD, $32^3 \times 64$, $a = 0.090$ fm, $a^{-1} = 2.194$ GeV

- $\circ~m_{\pi}=$ 164, 299, 415, 575 and 707 MeV, $m_s\simeq m_s^{
 m phys}$
- $\circ~$ Quenched gaugefields a $\simeq 0.1 {\rm fm},~m_\pi^{\rm valence} = 909\,{\rm MeV},$ to match hep-lat/0509113

Lattice spectroscopy - diquark-(di)quark differences

We consider qq'Q baryon differences:

 $C^{qq'Q}_{\Gamma}(t)-C^{qq'Q}_{\gamma_5}(t)$

Special status of good diquark observed

- Good ud diquark lowest in spectrum
- \circ Pattern repeated in ℓs and ss'
- ... and qq'Q baryon qQ meson differences

 $C^{qq'Q}_{\Gamma=\gamma_5}(t)-C^{q'ar{Q}}_{\gamma_5}(t)$

 $Qqq' - \bar{Q}q'$ splittings 0.22 ∆m_{aa'O}[GeV $\delta(1^+ - 0^+)$, ud → useful for 4-/5-quark states. 0.2 ce' | | | | 0.18 $\delta(Q[qq']_{0^+} - \overline{Q}q)[GeV]$ 0.55 0.16 0.5 0.14 0.45 04 0.12 Is-1 ---pheno, ud-u 0.35 0.1 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 m_{π} [GeV 0.25 $\delta(1^+ - 0^+)_{q_1q_2} = A / \left[1 + \left(m_\pi / B
ight)^{n \in 0, 1, 2}
ight]$ 0.1 0.2 0.3 04 0.5 0.6 07 0.8 $\delta(Q[q_1q_2]_{0^+} - \bar{Q}q_2) = C \left[1 + (m_{\pi}/D)^{n \in 0,1,2}\right]$

ud 0⁺ versus 1⁺, 0⁻ and 1⁻

$$(1^+ - 0^+)_{qq'}$$
 splitting

Diquark spectroscopy - comparing results

• We want to compare our results with phenomenology

 \rightsquigarrow more details in extra info slides

- $\circ\,$ Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- $\circ~$ For pheno estimates combine charm and bottom hadron masses such that leading $\mathcal{O}(1/m_Q)~(Q=c,b)$ cancel
- The main spectroscopy results are summarised as:

All in [MeV]	$\delta E_{\text{lat}}(m_{\pi}^{\text{phys}})$	$\delta E_{\rm pheno}$	$\delta E_{\rm pheno}^{\rm bottom}$	$\delta E_{\rm pheno}^{\rm charm}$
$\delta(1^+-0^+)_{ud}$	198(4)	206(4)	206	210
$\delta(1^+ - 0^+)_{\ell s}$	145(5)	145(3)	145	148
$\delta(1^+ - 0^+)_{ss'}$	118(2)			
$\delta(Q[ud]_{0^+} - \overline{Q}u)$	319(1)	306(7)	306	313
$\delta(Q[\ell s]_{0^+}-ar{Q}s)$	385(9)	397(1)	397	398
$\delta(\textit{Q}[\ell s]_{0^+} - ar{\textit{Q}}\ell)$	450(6)			

 \rightsquigarrow use the bottom estimate for static

 \sim use charm-bottom difference as estimate for deviation from static

 $\Rightarrow \lesssim \mathcal{O}(7) \text{MeV}$ deviation

• Overall, very good agreement observed.

Diquark attraction effect

Two limiting cases for the two quarks: $\circ \cos(\Theta) = 1$ on top of each other $\circ \cos(\Theta) = -1$ opposite each other

"Lift" as qualitative criterion:

$$\frac{\rho_2^{\perp}(R,\Theta=0,\Gamma)}{\rho_2^{\perp}(R,\Theta=\pi/2,\gamma_5)}$$

Increase observed in good diquark only

In the good diquark channel

- \Rightarrow Quarks spatially correlated.
- \Rightarrow Indication of attraction.

Spatial correlation over Θ

Good diquark size

- Expectation: $\rho_2^{\perp}(R, r_{ud}) \sim \exp(-r_{ud}/r_0)$
- Need to control:
 - \circ *Q*-interference \rightsquigarrow keep $r_{ud} < R$
 - \circ periodicity effects $\rightsquigarrow L = 5r_0$ ok
- Fit form: $A(R, r_{ud} = 0) \sim \exp(-R/r_0)$ \Rightarrow Data well described by (single) exponential Ansatz

Diquark shape

Going further

Good diquarks? - Static spectator study establishes diquarks in isolation

- Observe special GDQ status in spectrum
- Access GDQ attraction, radius and shape

Heavy diquarks? - Study HQSS through spectrum with static spectator

Heavy quark - diquark interaction? - Study attraction with non-static heavy quark

- Study diquark polarization
- \circ Reduce m_Q , here $m_Q \simeq m_s$
- Weaker attraction expected

new work in progress

Testing HQSS

Very preliminary

 \bullet Consider the difference between the qq'Q baryon and the $q\bar{Q}$ meson

 $\delta_q(t) = C^{qqQ}_{\gamma_{ii}}(t) - C^{q\bar{Q}}_{\gamma_i}(t) \quad \rightsquigarrow \text{ determine on the lattice: } M[\delta_q]$

where $q \in I, s, c$. Then relate it to the corresponding Ω -type baryon:

 $M[\Omega_q]/M[\delta_q] \sim M[qqq]/(M[qqQ] - M[q\bar{Q}]) \quad \rightsquigarrow \text{ in the HQSS limit: } M[\Omega_q]/M[\delta_q] = 3$

• At $m_{\pi} = 299$ MeV we find (low statistics)

- HQSS expectation well fulfilled for *b*-type quark masses
- Deviation for c-type quark masses and lower

Technical note: b-type calculation performed using NRQCD, masses determined via dispersion in \vec{p}^2 .

Testing diquark shape with lighter spectator quarks Very preliminary

- Replace static quark with strange quark
- $\circ\,$ Low statistics calculation at $m_{\pi}=575\,\,{\rm MeV}$
- Preliminary finding: $r_0^{\perp} \neq r_0^{\parallel}$
- Indeed: r₀^{||} < r₀[⊥] could indicate "screening" or suppression of diquark attraction(?)
 ⇒ More work required!

see also [hep-lat/9208025], [0902.4046]

Summary - Diquarks on the lattice

Gauge invariant approach to diquarks in $n_f = 2 + 1$ lattice QCD

 $\circ~$ Lattice setup with short chiral extrapolations, continuum limit still required

Diquark spectroscopy

- Special status of "good" diquark confirmed, attraction of 198(4)MeV over "bad"
- $\circ~$ Chiral and flavor dependence modelled through simple Ansatz
- $\circ~\mbox{Very good agreement with phenomenological estimates}$

Diquark structure

- $\circ q q$ attraction in good diquark induces compact spatial correlation
- \circ Good diquark size $r_0 \simeq \mathcal{O}(0.6)$ fm $\sim r_{
 m meson, \ baryon}$, weakly m_π dependent
- o Good diquark shape appears nearly spherical

New work and outlook

- $\circ\,$ First results on testing HQSS and its dependence on the quark mass.
- $\circ~$ Effort to understand diquark-quark interactions via spatial correlations.
- $\circ~$ Insights for studies of e.g. exotic tetraquarks (esp. doubly heavy)?
- $\circ~$ Perhaps a new glimpse of the internal workings of a baryon?

Thank you for your attention.

Further material

$$(1^+ - 0^+)_{qq'}$$
 splitting

We consider mass differences of qq'Q baryons:

$$C^{qq'Q}_{\Gamma}(t)-C^{qq'Q}_{\gamma_5}(t)$$

 $\rightsquigarrow Q$ drops out

 \rightsquigarrow measures diquark-diquark mass difference

Bad-good diquark splitting:

- $\circ~$ Special status of good diquark observed
- $\circ~{\rm Good}~0^+$ ud diquark lies lowest in the spectrum
- $\circ~$ Bad 1^+ ud diquark 100-200 MeV above
- $\circ~0^-$ and $1^ \mathit{ud}$ diquarks $\sim 0.5~GeV$ above
- $\circ~$ Pattern repeated in ℓs and ss'

 $\Delta m_{qq'Q}(m_{\pi})$ dependence:

- $\circ~$ Chiral limit: $\sim {\rm const}$
- \circ Heavy-quark limit: decreases $\sim 1/(m_{q_1}m_{q_2})$, with $m_\pi \sim (m_{q_1}+m_{q_2})$

$$\delta(1^+ - 0^+)_{q_1q_2} = A / \left[1 + (m_\pi/B)^{n \in 0,1,2}\right]$$

Lattice spectroscopy - diquark-quark differences

We consider mass differences of a qq'Q baryon and a light-static meson:

$$\begin{array}{|c|c|}\hline C_{\Gamma=\gamma_5}^{qq'Q}(t) - C_{\gamma_5}^{q'\bar{Q}}(t) \\ \hline & & \sim Q \text{ drops out} \\ & & \sim \text{ diquark-quark mass difference} \end{array}$$

 $\Delta m_{qq'Q}(m_{\pi})$ dependence:

 Chiral vs. heavy-quark limiting behaviours, as before

$$\delta(Q[q_1q_2]_{0^+} - \bar{Q}q_2) = C \left[1 + (m_{\pi}/D)^{n \in 0,1,2}\right]$$

Diquark-quark splitting:

- $\circ~$ Established mass differences between a good diquark and an <code>[anti]quark</code>
- $\circ~$ May prove useful in identifying favorable tetra-, pentaquark channels
- $\circ\,$ Omits possible distortions through additional light quarks, Pauli-blocking, spin-spin interactions $\ldots\,$

Diquark spectroscopy - phenomenological estimates

We want to compare our results with phenomenology

- $\circ\,$ Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- $\circ~$ For pheno estimates use charm and bottom hadron masses where leading $\mathcal{O}(1/m_Q)~(Q=c,b)$ can be cancelled

Four estimates considered:

$$\circ \ \delta(1^{+} - 0^{+})_{ud} : \boxed{\frac{1}{3} \left(2M(\Sigma_{Q}^{*}) + M(\Sigma_{Q})\right) - M(\Lambda_{Q})}$$

$$\circ \ \delta(1^{+} - 0^{+})_{us} : \boxed{\frac{2}{3} \left(M(\Xi_{Q}^{*}) + M(\Sigma_{Q}) + M(\Omega_{Q})\right) - M(\Xi_{Q}) - M(\Xi_{Q}')}$$

$$\circ \ \delta(Q[ud]_{0^{+}} - \bar{Q}u) : \boxed{M(\Lambda_{Q}) - \frac{1}{4} \left(M(P_{Qu}) + 3M(V_{Qu})\right)}$$

$$\sim P_{Qu}, V_{Qu} \text{ are the ground-state, heavy-light mesons}$$

$$\circ \ \delta(Q[us]_{0^{+}} - \bar{Q}s) :$$

$$M(\Xi_Q) + M(\Xi'_Q) - \frac{1}{2}(M(\Sigma_Q) + M(\Omega_Q)) - \frac{1}{4}(M(P_{Qs}) + 3M(V_{Qs}))$$

 $\rightsquigarrow P_{Qs}, V_{Qs}$ are the ground-state, heavy-strange mesons

Δ -Nucleon mass difference

Measured the mass difference of $\Delta - N$

- Prediction: $\delta(\Delta N) = 3/2 \times \delta(1^+ 0^+)_{ud}$
- $\circ~$ Same Ansatz as before
- \circ Prediction holds well, even at fairly large m_{π}

Good diquark size:

- Agreement w/ prev. quenched and dynamical
- Refinement through our results
- $r_0 \simeq \mathcal{O}(0.6)$ fm weak m_{π} dependence $\rightarrow \sim r_{\text{meson, barvon, arXiv:1604.02891}}$

 $r_0(m_\pi)$ dependence:

- $\circ \ m_{q,q'} \uparrow \text{ should produce more compact} \\ \text{object}$
- But, diquark attraction↓ works opposite
- Former effect dominates at large m_{π} ?
- But, in quenched diquarks definitely larger...

Review of doubly heavy tetraquarks in lattice QCD

Confirm and predict doubly heavy tetraquarks non-perturbatively

Tetraquarks as ground states? What would their binding mechanism/properties be?

HQS-GDQ picture, consequences for $qq'\bar{Q}'\bar{Q}$ tetraquarks:

- $\circ J^P = 1^+$ ground state tetraquark below meson-meson threshold
- $\,\circ\,$ Deeper binding with heavier quarks in the $\bar{Q}'\,\bar{Q}$ diquark
- $\circ~$ Deeper binding for lighter quarks in the qq' diquark

Ideal for lattice: Diquark dynamics and HQS could enable $J^P = 1^+$ ground state doubly heavy tetraquarks with flavor content $qq'\bar{Q}\bar{Q}'$.

Goal: $\Delta E = E_{\text{tetra}} - E_{\text{meson-meson}}$, e.g. in $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$ and others \Rightarrow Verify, quantify predictions of binding mechanism in mind.

Lattice point of view

Hidden flavor qQq̄'Q̄ are tetraquark candidates as excitations of QQ̄'.
 → technical difficulty for lattice calculations, need to resolve many f.vol states.
 → qq'Q̄Q̄', i.e. ground state candidates would be better to handle.

In the following

- $\circ~$ Tetraquarks with two heavy (c, b) and two light ($\ell,s)$ quarks.
- $\circ~{\sf Lattice}$ evidence for $bb\bar u\bar d$, $bb\bar\ell\bar s$.
- $\circ~$ Recent updates on systematics.
- $\circ~$ Survey of candidates status.

Lattice tetraquarks - 4 main approaches

 Static quarks (m_Q = ∞) Fitted potentials used to predict bound states and resonances. Allows for potential formulation. Ansatz fitted to lattice data. Plug into Schrödinger Eq. for E_n. 	 3. Finite volume energy levels Lattice energies equated to (un)observed states. Operator matrix (GEVP) gives λ_i ∝ E_i ⇒ Finite volume states. > Binding? Get ΔE = E₀ - E_{thresh}. > Mechanism? Vary quark masses. ~→ AF et al. ('17,'18, '20), Hughes et al. ('17), Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)
 2. HAL QCD method Lattice potentials studied for scattering properties. Expansion of energy dependent potential (systematics?). Method under debate, best motivated for heavy systems. 	 4. Scattering analysis Lattice energies studied in terms of scattering phase shifts. ○ Excited state energies via GEVP. ○ Analyse fvol spectrum ⇒ Resonant, bound, virtual bound, free. ~>Hadron Spectrum Coll. ('18,'20)

Lattice tetraquarks - 4 step recipe

The main tool is to adopt a variational approach

Lattice GEVP gives access to finite volume energy states (masses, overlaps).

Beware: Operator overlaps do not necessarily connect to the naively expected structures. Be careful when equating lattice correlators with trial-wave functions.

Step I: Set up a basis of operators, here $J^P = 1^+$

Diquark-Antidiquark:

$$D = \left((q_a)^T (C\gamma_5) q'_b \right) \times \left[\bar{Q}_a (C\gamma_i) (\bar{Q'}_b)^T - a \leftrightarrow b \right]$$

Dimeson:

$$M = (\bar{b}_a \gamma_5 u_a) (\bar{b}_b \gamma_i d_b) - (\bar{b}_a \gamma_5 d_a) (\bar{b}_b \gamma_i u_b)$$

Step II: Solve the GEVP and fit the energies

$$\begin{aligned} F(t) &= \begin{pmatrix} G_{DD}(t) & G_{DM}(t) \\ G_{MD}(t) & G_{MM}(t) \end{pmatrix}, \quad F(t)\nu = \lambda(t)F(t_0)\nu , \\ G_{\mathcal{O}_1\mathcal{O}_2} &= \frac{C_{\mathcal{O}_1\mathcal{O}_2}(t)}{C_{PP}(t)C_{VV}(t)} , \ \lambda(t) = Ae^{-\Delta E(t-t_0)} . \\ & \longrightarrow \Delta E = E_{\text{letra}} - E_{\text{thresh in case of binding correlator } (C_{\mathcal{O}_1\mathcal{O}_2}(t))/(C_{PP}(t)C_{VV}(t)). \end{aligned}$$

Most use these operators, but a larger basis has been worked out.

 \Rightarrow Need to be used by more groups.

→ HadronSpectrum Coll. ('17)

Step III: Finite volume corrections

Large energy shifts are possible due to the finite lattice volume.

With a single volume available:

- \circ In a bound state corrections are $\sim \exp(binding momentum)$
 - \rightsquigarrow strong supp. $\mathit{m}_{\mathsf{had}} = \mathsf{heavy}$
- In a scattering state expect large deviation around threshold

With multiple volumes available:

- \circ Track mass dependence \leadsto decide bound/scatt. state
- Power law corrections might be too small to resolve

Step IV: Finite volume / Scattering analysis

Limitation: Small GEVP without f.vol analysis ok for deeply bound states. Insufficient to tell apart free, resonant or virtual bd. states.

Extension: Connect energies to scattering phase shifts via finite volume quantisation conditions (Lüscher-formalism).

 $\circ\,$ connect (many) f.vol states to scattering parameters (sketch: BW)

 $\circ\,$ resonance: extra state(s) appear, lowest state close to threshold

What we know: A review of recent lattice studies

What we know: Deeply bound $J^P = 1^+ bb\bar{u}\bar{d}$ and $bb\bar{\ell}\bar{s}$ tetraquarks

· Colquhoun, AF, Hudspith, Lewis, Maltman ('17, '18, '20)

Overview -possible doubly heavy tetraquark candidates

observed (>1 group) no deep binding observed (1 group) not confirmed (>1 grou	ıp)
channel	deeply bound
$J^{P} = 1^{+}$	bbūd bcūd
	bbls bcls
	DSUG CSUG
	DDUC DDSC
	ccud ccls
	bbbb
$J^{P} = 0^{+}$	bbūū ccūū
	bbūd bcūd
	$bbar{l}ar{s}$ $bcar{l}ar{s}$
	bbss ccss
	bsūd̄ csūd̄
	bbūc bbsc
	bbēē ccūd
	ҌҌҌ҃Ҍ

Surveying candidates

Deeply bound states
Focus: strong interaction stable
$ \begin{array}{l} \rightarrow b b \bar{u} \bar{d} \text{ and } b b \bar{\ell} \bar{s} \text{ in } J^P = 1^+. \\ \rightarrow c c \bar{q} \bar{q}' \text{ not deep.} \\ \rightarrow b c \bar{q} \bar{q}' \text{ not clear.} \\ \rightarrow \text{ further candidates not observed.} \\ \rightarrow \text{ none observed in } J^P = 0^+. \end{array} $
$\rightsquigarrow {\sf Bicudo\ et\ al.}$ ('17), AF et al. ('17,'18, '20), HadSpec Coll. ('18), Hughes et al.
('17), Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)
States above threshold, resonances?
→ $bb\bar{u}\bar{d}$ in $J^P = 1^+$ /w static quarks find a resonance just above threshold. \rightarrow Bicudo et al. ('19) → No results from other approaches. → What about $cs\bar{u}\bar{d}$?

→ under investigation Hudspith, AF et al.('20), HadSpec ('20)

Shallow binding?

 $\circ cc\bar{u}\bar{d}$ now observed by LHCb, robust lattice post-diction?

 \rightarrow Work to remove current limitations.