

Triple Higgs Couplings at Current and Future Experiments

Sven Heinemeyer, IFT (CSIC, Madrid)

Taipei, 10/2024

- 1. Introduction
- 2. Resonant di-Higgs production: theory vs. experiment
- 3. Triple Higgs couplings at the HL-LHC and the ILC
- 4. Conclusions

1. Introduction

Q: Higgs potential: barely known⇒ measure triple Higgs couplings

- Q2: Why is there more matter than antimatter? ⇒ (EW) baryogenesis
- ⇒ requires First Order EW Phase Transition (FOEWPT)

not possible in the SM

- \Rightarrow BSM Higgs sector required
- \Rightarrow new Higgs bosons below $\sim 800 1000 \text{ GeV}$
- \Rightarrow new phenomena:
- resonant di-Higgs production
- BSM triple Higgs couplings

SM triple Higgs coupling: comparison of all colliders:

BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...

Di-Higgs production at the LHC:

 \Rightarrow strong interference of "box" and "SM-like Higgs"

Resonant di-Higgs production requires BSM physics

Resonant di-Higgs production requires BSM physics Two Higgs Doublet Model (2HDM): Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

Physical states: *h*, *H*, (*CP*-even), *A* (*CP*-odd), *H*[±] (charged)

"Physical" input parameters:

$$c_{eta-lpha}$$
 , $aneta$, v , M_h , M_H , M_A , M_{H^\pm} , m_{12}^2

Alignment limit: $c_{\beta-\alpha} \rightarrow 0$ (for $M_h \sim 125 \text{ GeV}$)

Many triple Higgs couplings: λ_{hhh} , λ_{hhH} , λ_{hHH} , λ_{hH+H^-} , λ_{HAA} , ...

Assumption: $h \sim h_{125}$

 Z_2 symmetry to avoid FCNC:

$$\Phi_1 \to \Phi_1 \;,\; \Phi_2 \to -\Phi_2$$

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons	
type I	Φ2	Φ2	Φ2	
type II	Φ2	Φ1	Φ1	ightarrow SUSY type
type III (lepton-specific)	Φ2	Φ2	Φ1	
type IV (flipped)	Φ2	Φ_1	Φ2	

Sum rule (with h SM-like): $\sin(\beta - \alpha) \approx 1$, $\cos(\beta - \alpha) \approx 0$

Unitarity/perturbativity and EWPO : $\Rightarrow M_A \sim M_H \sim M_{H^{\pm}}$

Box vs. s-channel Higgs:

Inclusion of one-loop corrections to THCs:

 \Rightarrow always closed subset, dominant for large THCs

BSM THCs at the HL-LHC

\Rightarrow possible strong resonance with BSM Higgs

Important: experimental limits are obtained for

- non-resonant production
- purely resonant production
- \Rightarrow no limits available for mixed scenarios :-(
- \Rightarrow existing exclusion bounds questionable!

Example model in this talk: 2HDM Similar results exist also for RxSM (Higgs singlet extension)

[S.H., A. Verduras PRELIMINARY]

2. Resonant di-Higgs production: theory vs. experiment:

 \Rightarrow analyses so far focus on "SM THC": $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{\text{SM,tree}} \equiv 1$ BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH}, \ldots

Example of m_{hh} distortions:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

Experimental analysis vs. reality: including exp. uncertainties

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow experimental analysis \Rightarrow full calculation

Experimental analysis vs. reality: relevance of loop corrections

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow experimental analysis \Rightarrow full calculation

Experimental analysis vs. reality: real point (I)

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

Experimental analysis vs. reality: real point (II)

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

3. THCs at the HL-LHC and the ILC

⇒ Why is there more matter than antimatter? ⇒ (EW) baryogenesis ⇒ requires First Order EW Phase Transition (FOEWPT) FOEWPT not possible in the SM ⇒ BSM Higgs sector required FOEWPT can cause Gravitational Waves (GW), detectable with LISA, ...

"Realistic" model analysis in the 2HDM

- **Q:** where do we find a FOEWPT?
- **Q:** implications for λ_{hhh} measurements?
- **Q:** implications for BSM Higgs bosons?
 - resonant di-Higgs production
 - BSM triple Higgs couplings

 \Rightarrow Parameter scan in the 2HDM type II \Rightarrow ScannerS

tan $\beta = 3$, $c_{\beta-\alpha} = 0$, $m_{12}^2 = m_H^2 s_\beta c_\beta$ 0.2 TeV $\leq m_H \leq 1$ TeV, 0.6 TeV $\leq m_A = m_{H^{\pm}} \leq 1.2$ TeV Constraints:

- Tree-level perturbativity \Rightarrow ScannerS
- Minimum of potential is global minimum ⇒ ScannerS
 ... or sufficiently long-lived ⇒ Evade
- Higgs searches at LEP, Tevatron, LHC \Rightarrow HiggsBounds
- SM-like Higgs properties $\Rightarrow \chi^2_{125} \Rightarrow$ HiggsSignals (2HDECAY, SusHi)
- Flavor physics (mainly $BR(B_s \rightarrow X_s \gamma)$, $\Delta M_{B_s}) \Rightarrow SuperIso$ bounds
- Electroweak precision data (T and S) \Rightarrow ScannerS
- λ_{hhh} at one-loop $\Rightarrow \mathsf{BSMPT}$

<u>2HDM parameter scan to yield FOEWPT:</u> $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM,tree}$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow GW signal requires $\kappa_{\lambda} \sim 2$ and $m_A - m_H \gtrsim 200$ GeV

Measurement of κ_{λ} selfcoupling at HL-LHC/ILC:

 \Rightarrow over most of the parameter space ILC is clearly superior to HL-LHC

Example: 2HDM \Rightarrow FOEWPT \Rightarrow GW's

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow Synergies: collider: $\lambda_{hhh} \Leftrightarrow$ LISA: GW signals

 \Rightarrow FOEWPT requires large λ_{hhh} and can induce GW signals

Accessing BSM THCs in the 2HDM at ILC500:

Parameter scan in the 2HDM (all types):

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

Type	$\kappa^{(0)}_{\lambda}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$
Ι	[-0.2, 1.2]	[0.2,6.8]	[-1.6, 1.5]	[-2.1, 1.9]
II	[0.6, 1.0]	[0.7,5.6]	[-1.5, 1.6]	[-1.7, 2.0]
LS	[0.5,1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
FL	[0.7,1.0]	[0.8,5.6]	[-1.6, 1.3]	[-1.9, 1.5]

- Scan of the parameter space
- Applied constraints to the 2HDM
 - EWPO
 - Tree-level unitarity + potential stability
 - BSM Higgs boson searches

- Properties of the SM-like Higgs boson
 - Close to the alignment!
- Flavor Observables

[ScannerS + HiggsTools + HDECAY]

Concrete example: 2HDM:

Parameter scan in the 2HDM (all types):

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

,						
ϕ	Type	$\kappa^{(0)}_\lambda$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$	
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]	
ϕ h	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]	
h	LS	[0.5, 1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]	
ϕ	FL	[0.7, 1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]	
$\phi = H, A, H^{\pm}$		(results from the effective potential)				

- Very large corrections are possible! $\lambda_{hhh}^{(1)} >> \lambda_{hhh}^{(0)}$
- h couplings to heavy Higgs bosons can be large ($\lambda_{h\phi\phi} \sim 15$)
 - Even at the *alignment limit* !!!

(In the SM, top-loops are $\sim -8\%$)

\Rightarrow effect of the extended BSM Higgs sector!

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

Effects from THCs at $e^+e^- \rightarrow hhZ$

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

In the alignment limit $(c_{\beta-\alpha}=0)$

[taken from F. Arco '24]

SUSY 2024 - IFT, Madrid

Effects on THC determination at the ILC:

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

Large 1L λ_{hhH} @ILC500GeV

 \Rightarrow individual effects of $\lambda_{hhh}^{(1)}$ and $\lambda_{hhH}^{(1)} \Rightarrow$ extraction possible? \Rightarrow WIP

Francisco Arco – Impact of One-Loop Triple Higgs Couplings on di-Higgs Production at e⁺e⁻ Colliders

Sven Heinemeyer, Particle Physics Phenomenology WS (Taipei), 23.10.2024

17

13/06/2024

[F. Arco, S.H., M. Mühlleitner - PRELIMINARY]

1L λ_{hhH} with different sign @ILC500

1813/06/2024Francisco Arco – Impact of One-Loop Triple Higgs Couplings on di-Higgs Production at e^+e^- CollidersSUSY 2024 – IFT, Madrid

 \Rightarrow individual effects of $\lambda_{hhh}^{(1)}$ and $\lambda_{hhH}^{(1)} \Rightarrow$ extraction possible? \Rightarrow WIP

4. Conclusions

- Triple Higgs couplings are in the focus of current and future colliders \Rightarrow focus so far on "SM triple Higgs coupling", $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM}$ BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...
 - \Rightarrow Both can have a strong impact on $\sigma(gg \rightarrow hh)$ and m_{hh}
- <u>BSM model: 2HDM:</u> spectrum: h, H, A, H^{\pm} with λ_{hhh} , λ_{hhH} , ... \Rightarrow large one-loop corrections to κ_{λ} of 100% ... 1000%
- Experimental searches for resonant di-Higgs production: \Rightarrow exp. analyses leave out interferences with non-res. diagrams \Rightarrow strong impact on $m_{hh} \Rightarrow$ results not reliable
- κ_{λ} in the 2HDM:
 - ⇒ FOEWPT requires $\kappa_{\lambda} \leq 2 \Rightarrow$ GW signal requires $\kappa_{\lambda} \sim 2$ ⇒ bad for HL-LHC ($\delta \lambda_{hhh} \sim 70\%$), good for ILC500 ($\delta \lambda_{hhh} \sim 10\%$)
- <u>BSM THCs in the 2HDM:</u> \Rightarrow FOEWPT requires $m_H \lesssim 800$ GeV \Rightarrow ILC500, ILC1000 are unique laboratories to study these scenarios \Rightarrow extraction of λ_{hhH} appears possible \Rightarrow WIP

Further Questions?

Phase transition: BSM vs. SM

\Rightarrow BSM Higgs sector required to realized FOEWPT

Bubble formation can lead to Gravitational Waves

[taken from D. Weir]

\Rightarrow Can this happen in the 2HDM? Implications for THCs?

GW observatory: LISA

Approved launch date: \sim 2035

Sven Heinemeyer, Particle Physics Phenomenology WS (Taipei), 23.10.2024

[NASA]

Six thermal histories in the 2HDM:

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

E: viable for FOEWPT, GWs are induced (detectable?) F: no FOEWPT, no GWs are induced

Six thermal histories in the 2HDM:

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

\Rightarrow Zone E preferred by phenomenology/FOEWPT