

Andreas Crivellin

PSI & UZH

Anomalies pointing to new Higgses at the Electroweak Scale

Taipei, 22.10.2024

Hints for a 95 GeV Higgs

• LEP: Z+bb

LEP

1-CL_b

1

-1 10

10

10

80

85

- ATLAS & CMS: γγ
- CMS: ττ (no signal in ATLAS)

1.6

1.4

1.2

0.8

0.6

0.4

0.2

80

2σ

3σ

115 120

•680→95+125

Observed

90

Expected for signal plus background

100

105 110

 $m_{\rm H}({\rm GeV/c}^2)$

Expected for background

95

Multiple channels, no associated search

95 GeV Combination

- LEP used to reduce the LLE
- No ATLAS signal in $\tau\tau$; reduced significance

3.4 global significance

Hints for a 152 GeV scalar

JHEP 07 (2023) 176 ATLAS-CONF-2024-005

160

160

• Hints for a resonance decaying to photons in association with leptons missing energy and b-jets

Dominant channels are $\gamma\gamma+X$

Hints for a 152 GeV scalar

10 г

Data-Bkg

 Hints for a resonance decaying to photons in association with leptons missing energy and b-jets

 ΔSM Signal

Dominant channels are $\gamma\gamma+X$

Drell-Yan Production

- One leptons, but not two leptons
- One tau but not two taus
- Ib but not t_{lep}
- Moderate MET • DY production of charged and neutral Higgs q q H H $T^{\pm}, W^{\pm}, \bar{b}$ H^{\pm} ν, Z, t

New Scalar with non-trivial SU(2) representation

Simplifed Model Analysis

S. Banik, AC, 2407.06267

Triplet or Doublet?

Is the 152 GeV Higgs a Triplet (Δ)?

- Δ^0 decays dominantly to WW
- Positive shift in the W mass as preferred by the EW fit

p

w

X

$h \rightarrow \gamma \gamma + X \text{ from ATLAS}$

S. Ashanujjaman, S. Banik, G. Coloretti, A.C. S. P. Maharathy,

B. Mellado, 2404.14492

Triplet consistently explains $h \rightarrow \gamma \gamma + X$ excesses

$h \rightarrow \gamma \gamma + X$ Channels

S. Ashanujjaman, S. Banik, G. Coloretti, A.C. S. P. Maharathy, B. Mellado, 2404.14492

Triplet consistently explains $h \rightarrow \gamma \gamma + X$ excesses

Combination

≈4σ excess at 152GeV

Two-Higgs Doublet Model type-I

• $\operatorname{Br}(H^{\pm} \to WZ) = 0$ (at tree-level)

Above 4σ , large Br needed

Large Br($H_{152} \rightarrow \gamma \gamma$) via Z₂ breaking in 2HDMs

Consistent with vacuum stability, perturbativity

Multi-lepton anomalies

Low mass WW searches

- No dedicated low-mass
 WW search
- Recast SM Higgs analyses

SM Higgs rescaled by 1.21

Room for NP

Low mass WW resonances searches

ATLAS and CMS combination

• New physics effect preferred over the whole range

Related to 95GeV and 151GeV?

Differential Top-Quark Distributions

• $\Delta \phi^{e\mu}$ angle between the leptons from the W decays

New Physics pollution of this SM measurement?

Differential Top-Quark Distributions

New Physics pollution of this SM measurement?

New Physics in Top-Quark Distributions

- ATLAS analysis normalized to the total cross section
- only sensitive to the shape of NP
- NP at small angels can explain deficit at large angles
- Associated production of new scalars decaying to WW and bb has a top-like signature

Related to the 95 GeV and 151.5 GeV hints?

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

 Fix m_s=151.5GeV and m_{s'}=95GeV by the hints for narrow resonances. Weak m_μ (270GeV) dependence.

Also deficit at large $\Delta \phi^{e\mu} \& m^{e\mu}$ explained

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

Monte Carlo	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$m_S[\text{GeV}]$
Powheg+Pyhtia8	213	102	9pb	10.5σ	143 - 156
aMC@NLO+Herwig7.1.3	102	68	$5\mathrm{pb}$	5.8σ	
aMC@NLO+Pythia8	291	163	$10 \mathrm{pb}$	11.3σ	148 - 157
Powheg+Herwig7.1.3	261	126	$10 \mathrm{pb}$	11.6σ	149 - 156
Powheg+Pythia8 (rew)	69	35	$5\mathrm{pb}$	5.8σ	
Powheg+Herwig7.0.4	294	126	$12 \mathrm{pb}$	13.0σ	149 - 156
Average	182	88	9pb	9.6σ	143 - 157

Improvement of SM prediction imperative!

Agreement with data significantly improved (>5 σ)

Is 95 GeV a singlet? Relation to 152 GeV?

 S'(95): Singlet ³⁰ decays dominantly to bb
 S(152):

S(152):
 decays
 dominantly
 to WW

Consistent with 95 GeV γγ signal strength & a mass of S with 151.5 GeV

Δ 2HDMS and top-quark production

Field	$SU(2)_L$	$U(1)_Y$
ϕ_s	1	0
ϕ_2	2	1/2
ϕ_1	2	1/2
Δ	3	0

Explains:

- Top-quark differential distributions
- Di-photon excesses
- Resonant top-quark production Elevated 4-top cross section

G. Coloretti, A.C. and B. Mellado, 2312.17314

Combined explanation possible

Hints for new Scalars at 152 GeV

• Combination within the simplified model $H \rightarrow SS^*$ with $S \rightarrow WW$, MET, $\gamma\gamma$

Conclusions

- Hints for narrow resonances at 95 GeV & 152 GeV
- Significant tensions in top quark differential distributions (>5σ)
- Can be explained via pp→H→SS' with masses consistent with the narrow resonances
- 95 GeV decays to dominantly to bb singlet?
- 151.5 GeV decays dominantly to WW => triplet?
- γγ+X excesses consistent with DY production of triplet

Most significant hints for new particles at the LHC

Outlook

Nature Rev. Phys. 6 (2024) 5, 294-309

Multi-leptons history

Fixed final states and phase-space defined by fixed model parameters. <u>NO tuning, NO scanning</u>

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)

J.Phys. G46 (2019) no.11, 115001 JHEP 1910 (2019) 157 Chin.Phys.C 44 (2020) 6, 063103 Physics Letters B 811 (2020) 135964 Eur.Phys.J.C 81 (2021) 365

Talk of Bruce Mellado at ZPW 2023

Multi-lepton Anomalies

• Deviations from the SM predictions in LHC processes involving two or more leptons, with and without (b-)jets

Final state	Characteristics	SM backgrounds	Significance
$\ell^+\ell^-$ +(<i>b</i> -jets) ^{62, 65, 66}	$m_{\ell\ell} < 100 \text{GeV}, (1b, 2b)$	$t\bar{t},Wt$	$> 5\sigma$
$\ell^+\ell^-$ +(no jet) ^{61,67}	$m_{\ell\ell} < 100{ m GeV}$	W^+W^-	$\approx 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell$ + (<i>b</i> -jets) ^{64, 68, 69}	Moderate H_T	$tar{t}W^{\pm},tar{t}tar{t}$	$> 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell, (\text{no } b\text{-jet})^{63, 70, 71}$	In association with h	$W^{\pm}h(125), WWW$	$\gtrsim 4\sigma$
$Z(\rightarrow \ell \ell)\ell$, (no <i>b</i> -jet) ^{62,72}	$p_{\mathrm{T}}^{\mathrm{Z}} < 100\mathrm{GeV}$	ZW^{\pm}	$> 3\sigma$

• 1711.07874 found m_s=150±5GeV Bud

A.C., B. Mellado, arXiv:2309.03870

Buddenbrock et al. arXiv:1901.05300 O. Fischer et al. arXiv: 2109.06065

- Here focus on:
 - -WW
 - Top-quark differential distributions

Statistically significant, motivate new EW scale scalars

PAUL SCHERRER INSTITUT