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The QCD Axion: Motivation

• QCD is naturally CP violating from phenomena like QCD-
instantons

• One naively expects a neutron electric dipole moment of 10-16 e 
cm

• But nEDM is measured to be below 3x10-26 e cm (Baker, 2006)

• The best explanation?  New U(1) axial symmetry, that when 
broken, cancels CP violation in the strong sector (Peccei, Quinn, 
1977)

• Consequence: New particle, called the axion  (Weinberg, Wilczek, 
1978) d = 10-16 e cm

    < 3x10-26 e cm
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Axions as Dark Matter

• Axions are produced athermally
• Misalignment Mechanism – Phase transition in the early 

universe leaves energy in the axion field which behaves as 
dark matter

• String/Defect Decay – Energy in topological defects 
radiates as cold axions

• In both cases axions are produced cold and in 
quantities sufficient to make up some or all of dark 
matter

• Perfect knowledge of QCD, cosmology, and inflation 
could, in principle, predict the axion mass that yields 
the amount of dark matter we have today
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Francesca Chadha-Day, John Ellis, 

David J. E. Marsh, 

sciadv.abj3618
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Theoretical Preferences on Scale
• In general, things that happen before the end of inflation could 

produce dark matter with any axion mass, but after inflation favors 
1ueV and above
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• Above 1 micro-eV, axions may have been produced after inflation

Adapted From: PDG Axion Review 2018
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Deeper Theoretical Preferences

Rybka - University of Virginia Colloquium - 2024

There is both model dependence and genuine disagreement in calculations about the axion mass that 
produces 100% dark matter density today – it is up to experimentalists do a comprehensive search
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Promising experimental 
techniques under development

Clean experimental signal
Well developed techniques
Ripe for incorporating 
quantum sensing 
techniques
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Axion Photon Bounds
GitHub - cajohare/AxionLimits: Data, plots and code for constraints on axions, axion-like 
particles, and dark photons   - includes zoom-in later on, updated Oct 2024
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Note the significant 
astrophysical constraints on 
ALP parameters.

The yellow band is the QCD 
axion, white space is Axion-
Like Particle (ALP) space

Rybka - Dark Interactions, Vancouver, 2024

https://github.com/cajohare/AxionLimits
https://github.com/cajohare/AxionLimits


Axion Photon Bounds, Zoomed In

• KSVZ and DFSZ are 
benchmark axion 
coupling models.  

• The class of 
experiments probing 
QCD axion 
parameters is the 
“Axion Haloscope”
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Axion Detector Length and Time Scales
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Principle of the Sikivie Axion HaloscopeThe	Axion	Haloscope
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requires	a	tunable	resonator	

This	axion	lineshape
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exaggerated.	A	real	
signal	would	hide	
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a	single	digitization.	
An	axion	detection	
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See P. Sikivie, PRL 51, 1415 (1983) for origin



Axion Haloscope for my Intro Physics Class
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Axion Haloscope for my Intro Physics Class
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Axion Dark 
Matter

Electromagnetic Cavity 
Resonance

Axion-Photon 
Coupling
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Axion Haloscope: How to search for Dark Matter Axions

Dark Matter Axions will convert to 
photons in a magnetic field.

The conversion rate is enhanced if 
the photon’s frequency corresponds 

to a cavity’s resonant frequency.

Signal Proportional to
Cavity Volume
Magnetic Field

Cavity Q

Noise Proportional to
Cavity Blackbody Radiation

Amplifier Noise

Sikivie PRL 51:1415 (1983)
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ADMX Design
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Tuning ADMX
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We are only sensitive to axions 
within ~10 kHz of the cavity’s 
fundamental mode.

We tune this frequency 
mechanically by moving rods 
within the cylinder.

Lowest mode couples well to DM axions



The Importance of Noise

Signal Power

Noise Power

We need our noise to be much smaller than our signal to make a detection.

The noise is a thermal, and the slower we scan the smaller the uncertainty.

We must carefully calibrate the noise of our system – to understand our sensitivity, we must understand the 
temperatures of the components, the signal loss in the cables, and the performance of the amplifiers.
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Minimizing Noise
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M. Guzzetti, APS April 2023
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Noise is minimized by cooling to millikelvin 
temperatures and using superconducting amplifiers 
operating at or near the standard quantum limit

JPA provided by 
Siddiq Group at UC Berkeley 



ADMX Operations

The cavity is tuned every 100 seconds, during which power spectra are 
taken.  Overlapping power spectra are examined for the characteristic 
axion signal shape appearing on-resonance.

The picture on the left shows how an axion signal would appear in the 
data.  This is a synthetic signal.
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Data Taking Cadence
14 “nibbles” = ∼ 10 MHz sweeps single scans: range: 50 kHz, resolution: 100Hz,  integration time: 100s 

Bartram et al. Phys. Rev. D 103, 032002 (2021)
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ADMX Recent Results

Bartram et al. PRL 127, 261803 (2021)

We are sensitive to DFSZ or near-DFSZ axions at nominal dark matter densities, and KSVZ axions at 
fractional dark matter densities.   

Excluded parameter space over the last 5 years
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Preliminary sensitivity from this year

preliminary

M. Guzzetti, Patras Workshop 2024



ADMX Results in broader context
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ADMX High-Resolution Results

Rybka - PPP15, Taipei, 2024

M. Guzzetti

Nonvirialized “extra cold” dark matter 
produces a narrow signal with a 
measurable doppler shift

A high-resolution analysis to search for 
narrowband signals puts limits on dark 
matter axion flow densities

M. Guzzetti, General Exam
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Other Operating Haloscopes

• DFSZ searches from 
ADMX and CAPP

• KSVZ or near-KSVZ 
searches from 
HAYSTAC and TASEH

• Plus a host of small 
scale operating 
prototypes and 
planned haloscope 
experiments!
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ADMX: Future Plans

Sensitivity Projections
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ADMX EFR

New Site

New Magnet

New Design



ADMX-EFR
• Incorporate technologies as they mature for a continuous scan 

sensitive to DFSZ axions at 2GHz and up 

• Magnet is already deployed at Fermilab

• Opportunity for a “Dark Wave Laboratory”
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Electronics 
dil. fridge Resonator 

dil. fridge
Resonator 

array

Low noise 
amplifiers
25mK
0.01 Gauss

100mK
9.4T

Site: Fermilab



Status of ADMX EFR
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18 cavity
array

Magnet has been 
delivered to Fermilab 
June 26, 2025

Resonator array 
designed; prototypes 
constructed



The Future of Haloscopes

• Sophisticated, high-Q Resonators
read out by

• Sub-quantum limit detectors
inside of

• Large, high-field magnets
located at

• Dedicated Facilities
operated by

• Larger Collaborations
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A thorough search up to 10 GHz+ will require

At higher frequencies, axion haloscopes 
suffer from unfavorable

-Volume scaling
-Resonator Q scaling
-Standard Quartum Limit noise scaling



Conclusions

• Much of the theoretically preferred ultralight dark matter is 
accessible experimentally (with enough work)

• Haloscopes (e.g., ADMX) are leading the way and could make a 
discovery at any time

• New technologies are enabling broader and more powerful searches, 
accelerating towards the goal of discovery
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