BSM Physics at FASERV

<u>Based On: 10.1007JHEP12(2021)209, arXív:2205.11077</u>

The Future is Illuminating 2nd NCTS TG2.1 Hsinchu Hub Workshop June 28 - 30, 2022, NTHU, Hsínchu, TW

Ouseph C.J. Department of Physics, National Tsing Hua University, Taiwan

OutLine

1, Introduction to FASER Detector

2, Non-standard neutrino and Z' interactions at the FASERv and LHC

3, Constraining the Active-to-Heavy-Neutrino transitional magnetic moments Type interactions associated with the Z'*interactions at FASER*_ν

4, The future detectors

Neutrinos at the LHC

Neutrinos detected from many sources, but not from colliders (until 2018) [Phys.Rev.D 104 (2021) 9, L091101].

- π , K and D meson decay. ATLAS provides an intense and strongly collimated beam of TeV-energy neutrinos along beam collision axis.
- The neutrino beam passes through the side tunnels TI12 and TI18, about ~500 m downstream from ATLAS and shielded by ~ 100 m of rock from the IP, providing a natural location for LHC neutrino experiments.

But there is a huge flux of neutrinos in the forward direction, mainly from

FASER: ForwArd Search ExpeRiment at the LHC

The Forward Search Experiment at the LHC, has the potential to detect collider neutrinos for the first time.

FASERv is a newly approved detector whose main mission is to detect the neutrino flux from the collision of the proton beams at the ATLAS Interaction Point during the run III of the LHC in 2022-2024.

FASERv is an emulsion neutrino detector, consisting of 1000 layers of emulsion films interleaved with tungsten plates as target. The total target mass is about 1.2 ton.

source: Eur.Phys.J. C80 (2020) no.1, 61

FASERv will give us an opportunity to measure v-N cross-section in the ~ [100GeV – few TeV] range.

FASERv will record topology/kinematics of interaction

Neutrinos at the LHC

Two collaborations have propose neutrino experiments at the LHC. SND@LHC (proposed) FASERnu (approved and funded)

Source: arXiv:2109.10905v1

The LHC neutrino beam is broad, with mean energies around 1 TeV, exceeding the energies of all other artificial neutrino sources.

Source: 10.1103/PhysRevD.104.113008

It originates from a variety of sources: pion, kaon, hyperon and charm decays.

It contains all neutrinos and anti-neutrinos of all three flavour.

LHC Neutrino Physics Potential

Non Standard Neutrino and Z' Interaction @ FASER

K. Cheung, C. J. Ouseph and T. Wang, JHEP12(2021), 209 doi:10.1007JHEP12(2021)209[arXiv:2111.08375 [hep-ph]]

Cont'd

$$\chi^{2}(g_{qg}g_{\nu},\alpha) = \min_{\alpha} \left[\frac{(N_{BSM}^{\nu_{e}} - (1+\alpha)N_{SM}^{\nu_{e}})^{2}}{N_{BSM}^{\nu_{e}}} + \frac{(N_{BSM}^{\nu_{e}} - (1+\alpha)N_{SM}^{\nu_{e}})^{2}}{N_{BSM}^{\nu_{e}}} + \frac{(N_{BSM}^{\nu_{e}} - (1+\alpha)N_{SM}^{\nu_{e}})^{2}}{N_{BSM}^{\nu_{e}}} + \left(\frac{\alpha}{\sigma_{norm}}\right)^{2} \right]$$

etor's neutrino scattering
he Z' at 95% C.L.

$$+ N_{int} + N_{SM}.$$

nce parameters, with the
prorm, take into account
uncertainties from the flux

$$\int_{0}^{0} \frac{1}{0} \int_{0}^{0} \frac{1}{0}$$

FASER ν detec sensitivity to the

$$N_{BSM} = N_{Z'} + N_{int} + N_{SM}.$$

 α is the nuisance parameters, with the
uncertainties σ_{norm} , take into account
normalization uncertainties from the fl
and detector.

K. Cheung, C. J. Ouseph and T. Wang, JHEP12(2021)

Effects of Z' on the monojet production @ LHC

We follow closely the experimental cuts outlined in the ATLAS paper in order to directly use their upper limits on the monojet production cross sections.

ATLAS paper results was based on the monojet search at 13 TeV with an integrated luminosity of 139 fb-1 [Phys. Rev. D 103 (2021) 112006 [arXiv:2102.10874]]

 $pp \rightarrow Z' + j \rightarrow \nu\nu + j$

K. Cheung, C. J. Ouseph and T. Wang, JHEP12(2021)

Cont'd

K. Cheung, C. J. Ouseph and T. Wang, JHEP12(2021)

associated with the Z' interactions at FASER ν .

arXiv:2205.11077

$$-V_{\alpha N}\overline{N}\gamma^{\mu}P_{L}\nu_{\alpha}Z_{\mu} + H.c. - \sum_{q,\nu,l} \left[g_{q}\overline{q}\gamma^{\mu}q + g_{\nu}\overline{\nu}\gamma^{\mu}P_{L}\nu + g_{l}\overline{l}\gamma^{\mu}l\right]Z_{\mu}'$$

arXiv:2205.11077

FASER_{\u03c4} Sensitivity towards Transition Magnetic Moment type interactions

$$N_{\nu_{\alpha}}^{\text{detc}} = N_{\nu_{\alpha}}(\nu_{\alpha}A \to NA) \times \mathscr{P}_{detc} \times \text{BR}(N \to \nu_{\alpha} X X)$$
$$\mathscr{P}_{\text{detc}} = 1 - \exp(\frac{-d}{\beta c\tau}) \qquad d = \min(\Delta, \frac{R}{\sin \theta})$$

<u>arXiv:2205.11077</u>

•	•	•	•	•	•	•

Cont'd BM-I

Heavy Neutrino Coupled with L_e Doublet,

$$\mu_{\nu_{\mu}} = \mu_{\nu_{\tau}} = 0$$
$$V_{\mu N} = V_{\tau N} = 0$$

Final state consist of charged leptons only

arXiv:2205.11077

Cont'd BM-II

Heavy Neutrino Coupled with L_{μ} Doublet,

$$\mu_{\nu_e} = \mu_{\nu_\tau} = 0$$
$$V_{eN} = V_{\tau N} = 0$$

Final state consist of charged leptons only

arXiv:2205.11077

Final states consist of charged leptons and quark only

Cont'd BM-III

Heavy Neutrino Coupled with L_{τ} Doublet,

$$\mu_{\nu_{\mu}} = \mu_{\nu_{e}} = 0$$
$$V_{\mu N} = V_{eN} = 0$$

Final state consist of charged leptons only

<u>arXiv:2205.11077</u>

Final states consist of charged leptons and quark only

The Future Detectors - FPF

Source: arXiv:2109.10905v1

FASER2: a magnetic spectrometer and tracker, will search for light and weaklyinteracting states, including long-lived particles, new force carriers, axion-like particles, light neutralinos, and dark sector particles.

FASER ν 2: Upgraded version of FASER ν

AdvSND: Upgraded version of SND@LHC

FORMOSA: a detector composed of scintillating bars, will provide world-leading sensitivity to millicharged particles and other very weakly-interacting particles across a large range of masses.

FLARE: a proposed 10-tonne-scale noble liquid detector, will detect neutrinos and also search for light dark matter.

Source: arXiv:2109.10905v1

Thank you . . .

BR-BM-I

BR-BM-II

BR-BM-III

Angular Distribution of M_N

