Dark matter as the origin of neutrino mass in the inverse seesaw mechanism

Sanjoy Mandal KIAS, Seoul

Email: smandal@kias.re.kr

Talk is based on *Phys.Lett.B* 821 (2021) 136609 In collaboration with Jose W. F. Valle, N. Rojas and R. Srivastava

The Future is Illuminating, 2022

NCTS, TAIWAN

Outline

Introduction

A quick review of Original Scotogenic Model

Brief overview of Scotogenic inverse seesaw mechanism

- **1. Explicit lepton number breaking**
- 2. Dynamical lepton number breaking
- Phenomenology of scalar dark matter

Relic density and direct detection

Neutrinoless double beta decay and LFV

Conclusion

Introduction

Neutrinos are massive: from oscillations Dark matter: from cosmology

The SM is incomplete: New Physics is required to account for neutrino masses and dark matter

Neutrino masses are at least $\mathcal{O}(10^6)$ smaller than electron mass

Addition of RHN $\Rightarrow Y_{\nu} \bar{L} \tilde{H} N_R$, mass generation through Higgs mechanism $\Rightarrow Y_{\nu}$ will be very small \Rightarrow Neutrino mass origin is different?

Many ways to generate small neutrino mass: Tree-level(seesaw models), loop-level (radiative models)

Big question: Is there any connection between dark matter and neutrino masses?

May be yes: Scotogenic Model arXiv: hep-ph/0601225, Ernest Ma

Address both questions (neutrino mass and dark matter) in an "economical" way

Neutrino masses are "seeded" by dark sector

Original Scotogenic model

Scotogenic model = SM + 3 singlet fermions + 1 scalar doublet + a dark \mathbb{Z}_2 parity

4

	Standard Model			New Fermions	New Scalar
	L_a	e_a	Н	N	η
$SU(2)_L$	2	1	2	1	2
$U(1)_Y$	-1/2	-1	1/2	0	1/2
\mathbb{Z}_2	+	+	+	_	—

 \mathbb{Z}_2 parity: $<\eta>=0$

No tree level neutrino mass

arXiv: hep-ph/0601225, Ernest Ma

$$\mathcal{L}_{N} = \overline{N}_{i} \partial \!\!\!/ N_{i} - \frac{M_{R_{i}}}{2} \overline{N_{i}^{c}} N_{i} + y_{i\alpha} \eta \overline{N_{i}} \ell_{\alpha} + \text{h.c.}$$

$$V = -\mu_{H}^{2} H^{\dagger} H + m_{\eta}^{2} \eta^{\dagger} \eta + \lambda (H^{\dagger} H)^{2} + \lambda_{\eta} (\eta^{\dagger} \eta)^{2} + \lambda_{3} (H^{\dagger} H) (\eta^{\dagger} \eta)$$

$$+ \lambda_{4} (H^{\dagger} \eta) (\eta^{\dagger} H) + \frac{\lambda_{5}}{2} ((H^{\dagger} \eta)^{2} + h.c.)$$

Inert scalar sector: $\eta^{\pm} \eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$

$$m_{\eta^{+}}^{2} = m_{\eta}^{2} + \frac{\lambda_{3}}{2}v^{2}$$

$$m_{\eta_{R}}^{2} = m_{\eta}^{2} + \frac{(\lambda_{3} + \lambda_{4} + \lambda_{5})}{2}v^{2}$$

$$m_{\eta_{R}}^{2} = m_{\eta}^{2} + \frac{(\lambda_{3} + \lambda_{4} - \lambda_{5})}{2}v^{2}$$

$$m_{\eta_{R}}^{2} = m_{\eta}^{2} + \frac{(\lambda_{3} + \lambda_{4} - \lambda_{5})}{2}v^{2}$$

1-loop neutrino masses Tree-level: Forbiden by the \mathbb{Z}_2 symmetry $\langle \Phi \rangle$ $\mathcal{M}_{\alpha\beta}^{\nu} = \frac{Y_{\alpha i}^{\nu} Y_{\beta i}^{\nu}}{32\pi^2} M_{N_i} \left[\frac{m_{\eta_R}^2}{m_{\pi}^2 - M_{N_i}^2} \log\left(\frac{m_{\eta_R}^2}{M_{N_i}^2}\right) - \frac{m_{\eta_I}^2}{m_{\pi}^2 - M_{N_i}^2} \log\left(\frac{m_{\eta_I}^2}{M_{N_i}^2}\right) \right]$ Approximation: M_N^2 , $m_{n_P}^2$, $M_N^2 - m_{n_P}^2 \gg \lambda_5 v^2$ $\mathcal{M}^{\nu}_{\alpha\beta} \approx \frac{Y^{\nu}_{\alpha i} Y^{\nu}_{\beta i}}{32\pi^2} \lambda_5 v^2 \frac{\mathcal{M}_{N_i}}{m_n^2 - M_{N_i}^2}$ u_i N_k N_k

 $\eta^{R,I}/N_k$: Dark particles in the loop

 $\langle \Phi \rangle$

 ν_j

The lightest particle odd under \mathbb{Z}_2 is stable: dark matter candidate

Fermionic dark matter: lightest of N_i

- can be produced only through Yukawa interaction
- Potential problems with LFV: is it compatible with the current bounds?

Scalar dark matter: lightest of η_R/η_I

- It also has gauge interactions
- Not correlated to LFV

Low-scale-seesaw

Mohapatra, Valle, 1986

Valle et al, 1404.3752

SM et al., 2009.10116

 $-\mathscr{L} = \sum_{ij} Y_{\nu}^{ij} L_i \tilde{\Phi} \nu_j^c + M^{ij} \nu_i^c S_j + \frac{1}{2} \mu_S^{ij} S_i S_j + \text{H.c.} \qquad \mu_s^{ij} S_i S_j : \text{ Explicit breaking of } \#L \text{ by two units}$

Neutrino mass: $m_{\nu} \approx m_D M^{-1} \mu_S (M^T)^{-1} m_D^T = \frac{v^2}{2} Y_{\nu} M^{-1} \mu_S (M^T)^{-1} Y_{\nu}^T$

Add pair of singlets ν^c and S with $L[\nu^c] = 1$, L[S] = 1

With very small μ_S , one can allow large $Y_{\nu} \sim \mathcal{O}(1)$, even for $M_N \sim \mathcal{O}(1)$ TeV

No explanation for smallness of $\mu_S!!$

Let's try with Dynamical breaking: $L[v^c] = 1, L[S] = 1, L[\sigma] = -2$ $-\mathscr{L} = \sum_{i,j}^{3} Y_{\nu}^{ij} L_i \tilde{\Phi} \nu_j^c + M^{ij} \nu_i^c S_j + Y_S^{ij} \sigma S_i S_j + \text{H.c.}$ SM et al., 2103.02670 $m_{\nu} \simeq \frac{v_{\Phi}^2}{\sqrt{2}} Y_{\nu} M^{-1} Y_S v_{\sigma} M^{-1T} Y_{\nu}^T$ $\mu_s = Y_S v_{\sigma} / \sqrt{2}$, hence can take Y_S very small and $v_{\sigma} \sim \mathcal{O}(\text{TeV})$ CP-even scalars: h and H Imaginary part of the σ corresponds to the physical majoron $J = \text{Im } \sigma$

KeV scale majoron can play the role of Warm dark matter candidate. It decays to neutrinos, with a tiny strength proportional to their mass

Scotogenic Inverse-seesaw: Explicit breaking

SM	et al	., 190	07.07728
----	-------	--------	----------

		e^{c}	ν^{c}	S	f	Φ	ξ
$SU(2)_L \times U(1)_Y$	(2, -1)	(1,2)	(1,0)	(1,0)	(1, 0)	(2,1)	(1, 0)
$U(1)_{B-L}$	-1	1	1	-1	0	0	1
\mathcal{Z}_2	+	+	+	+	_	+	

 $m_{\xi_R}^2 - m_{\xi_I}^2 = \mu_{\xi}^2$

 \mathbb{Z}_2 -odd extra particles: fermion *f* and scalar ξ

$$\mathcal{L}^{\text{Yukawa}} = -Y_{\nu^c} \overline{L} i \tau_2 \Phi^* \nu^c - Y_{\xi} \xi f S - M \nu^c S - \frac{1}{2} \mathcal{M}_f f f + H.c.$$

Minimal case: 2-copies of ν^c , *S* and *f*

$$\begin{split} \mathcal{V}_{(s)} &= -m^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{2} \left(\Phi^{\dagger} \Phi \right)^2 - m_{\xi}^2 \xi^* \xi + \frac{\lambda_{\xi}}{2} \left(\xi^* \xi \right)^2 + \lambda_{\Phi\xi} \left(\Phi^{\dagger} \Phi \right) \left(\xi^* \xi \right) + \frac{\mu_{\xi}^2}{4} \left(\xi^2 + \text{h.c.} \right) \\ \downarrow \\ \Phi &= \begin{pmatrix} \phi^+ \\ \left(v_{\Phi} + h + i\phi^0 \right) / \sqrt{2} \end{pmatrix}, \ \xi = \left(\xi_R + i\xi_I \right) / \sqrt{2} \end{split}$$
Softly breaks $U(1)_{B-L}$

No neutrino mass at tree-level

$$m_{\xi_R}^2 = m_{\xi}^2 + \frac{1}{2} \begin{pmatrix} \lambda_{\Phi\xi} v_{\Phi}^2 + \mu_{\xi}^2 \end{pmatrix}$$
$$m_{\xi_I}^2 = m_{\xi}^2 + \frac{1}{2} \begin{pmatrix} \lambda_{\Phi\xi} v_{\Phi}^2 - \mu_{\xi}^2 \end{pmatrix} \quad \mathcal{M}_{F^0} = \begin{bmatrix} 0 & m_D & 0 \\ m_D & 0 & M \\ 0 & M & 0 \end{bmatrix} = \begin{bmatrix} 0 & Y_{\nu^c}^i \frac{v_{\Phi}}{\sqrt{2}} & 0 \\ Y_{\nu^c}^j \frac{v_{\Phi}}{\sqrt{2}} & 0 & M \\ 0 & M & 0 \end{bmatrix}$$

Goal: generate the term: μSS **at loop-level**

comes from
$$Y_{\xi}\xi fS$$
 and $\frac{\mu_{\xi}^2}{4}(\xi^2 + h.c)$

Generates the term: μSS

 $\mu = \frac{Y_{\xi}Y_{\xi}}{16\pi^{2}}\mathcal{M}_{f}\left(B_{0}(0,\mathcal{M}_{f}^{2},m_{\xi_{R}}^{2}) - B_{0}(0,\mathcal{M}_{f}^{2},m_{\xi_{I}}^{2})\right) \qquad \text{without } \mu_{\xi}, \ m_{\xi_{R}} = m_{\xi_{I}} \text{ and hence } \mu = 0$ $= \frac{Y_{\xi}Y_{\xi}}{16\pi^{2}}\mathcal{M}_{f}\left(\frac{m_{\xi_{R}}^{2}}{m_{\xi_{R}}^{2} - \mathcal{M}_{f}^{2}}\log\left(\frac{m_{\xi_{I}}^{2}}{\mathcal{M}_{f}^{2}}\right) - \frac{m_{\xi_{I}}^{2}}{m_{\xi_{I}}^{2} - \mathcal{M}_{f}^{2}}\log\left(\frac{m_{\xi_{I}}^{2}}{\mathcal{M}_{f}^{2}}\right)\right)$ $\mathcal{M}_{F^{0}} = \begin{bmatrix} 0 & m_{D} & 0\\ m_{D} & 0 & M\\ 0 & M & \mu \end{bmatrix} \qquad \qquad \mathcal{M}_{\nu} = m_{D}M^{-1}\mu M^{-1T}m_{D}^{T}.$

Smallness of μ is related with smallness of $\mu_{\mathcal{E}}^2$ and loop suppression factors

Not a pleasant solution as potential is not B-L invaraint

Scotogenic Inverse-seesaw: Dynamical breaking

		e^{c}	$ u^c $	S	f	Φ	ξ	σ
$\boxed{SU(2)_L \times U(1)_Y}$	(2, -1)	(1,2)	(1, 0)	(1,0)	(1,0)	(2,1)	(1, 0)	(1, 0)
$U(1)_{B-L}$	-1	1	1	-1	0	0	1	1
\mathcal{Z}_2	+	+	+	+		+		+

$$\mathcal{L}^{\text{Yukawa}} = -Y_{\nu^{c}}\overline{L}i\tau_{2}\Phi^{*}\nu^{c} - Y_{\xi}\xi fS - M\nu^{c}S - \frac{1}{2}\mathcal{M}_{f}ff + H.c.$$

$$\mathcal{V}_{(s)} = -m^{2}\Phi^{\dagger}\Phi + \frac{\lambda_{\Phi}}{2}\left(\Phi^{\dagger}\Phi\right)^{2} - m_{\xi}^{2}\xi^{*}\xi + \frac{\lambda_{\xi}}{2}\left(\xi^{*}\xi\right)^{2} - m_{\sigma}^{2}\sigma^{*}\sigma + \frac{\lambda_{\sigma}}{2}(\sigma^{*}\sigma)^{2}$$

$$+\lambda_{\Phi\sigma}\left(\Phi^{\dagger}\Phi\right)(\sigma^{*}\sigma) + \lambda_{\xi\sigma}\left(\xi^{*}\xi\right)(\sigma^{*}\sigma) + \lambda_{\Phi\xi}\left(\Phi^{\dagger}\Phi\right)\left(\xi^{*}\xi\right) + \frac{\lambda_{5}}{2}\left(\xi^{*}\sigma\right)^{2} + h.c.$$

#L is broken by the vev of the complex singlet σ

$$\begin{split} \phi^{0} &= \frac{1}{\sqrt{2}} (v_{\Phi} + R_{1} + iI_{1}), \\ \sigma &= \frac{1}{\sqrt{2}} (v_{\sigma} + R_{2} + iI_{2}) \\ \xi &= \frac{1}{\sqrt{2}} (\xi_{R} + i\xi_{I}) \end{split} \qquad \begin{aligned} m_{\xi_{R}}^{2} &= m_{\xi}^{2} + \frac{\lambda_{\Phi\xi}}{2} v_{\Phi}^{2} + \frac{\lambda_{\xi\sigma} + \lambda_{5}}{2} v_{\sigma}^{2} \\ m_{\xi_{I}}^{2} &= m_{\xi}^{2} + \frac{\lambda_{\Phi\xi}}{2} v_{\Phi}^{2} + \frac{\lambda_{\xi\sigma} - \lambda_{5}}{2} v_{\sigma}^{2} \end{aligned} \qquad \begin{aligned} m_{\xi_{R}}^{2} &= m_{\xi_{I}}^{2} = \lambda_{5} v_{\sigma}^{2} \\ m_{\xi_{I}}^{2} &= m_{\xi}^{2} + \frac{\lambda_{\Phi\xi}}{2} v_{\Phi}^{2} + \frac{\lambda_{\xi\sigma} - \lambda_{5}}{2} v_{\sigma}^{2} \end{aligned}$$

$$Now \lambda_{5} v_{\sigma}^{2} \text{ plays the role of } \mu_{\xi} \end{aligned}$$

comes from $Y_{\xi}\xi fS$, $\frac{\lambda_5}{2}((\xi^*\sigma)^2 + h \cdot c)$ and $\mathcal{M}_f ff$

Again generates the term: μSS

$$\mu = \frac{1}{16\pi^2} Y_{\xi} \mathcal{M}_f \left(\frac{m_{\xi_R}^2}{m_{\xi_R}^2 - \mathcal{M}_f^2} \log\left(\frac{m_{\xi_R}^2}{\mathcal{M}_f^2}\right) - \frac{m_{\xi_I}^2}{m_{\xi_I}^2 - \mathcal{M}_f^2} \log\left(\frac{m_{\xi_I}^2}{\mathcal{M}_f^2}\right) \right) Y_{\xi}^T$$

Assumption: Y_{ξ} and \mathcal{M}_f diagonal \rightarrow factorize the loop function

$$\mu_{i} = \frac{Y_{\xi}^{(i)2} M_{f}^{(i)}}{16\pi^{2}} \left(\frac{m_{\xi_{R}}^{2}}{m_{\xi_{R}}^{2} - M_{f}^{(i)2}} \log \left(\frac{m_{\xi_{I}}^{2}}{M_{f}^{(i)2}} \right) - \frac{m_{\xi_{I}}^{2}}{m_{\xi_{I}}^{2} - M_{f}^{(i)2}} \log \left(\frac{m_{\xi_{I}}^{2}}{M_{f}^{(i)2}} \right) \right)$$

$$\mu_{i} \approx \frac{1}{16\pi^{2}} \frac{\lambda_{5} v_{\sigma}^{2}}{M_{f}^{(i)2} - m_{\xi_{R}}^{2}} M_{f}^{(i)} Y_{\xi}^{(i)2} \qquad \qquad \langle \Phi \rangle \qquad \qquad \langle \Phi \rangle$$
Neutrino mass:
$$\mathcal{M}_{\nu} = m_{D} M^{-1} \mu M^{-1T} m_{D}^{T}.$$

$$M_{\nu} = m_{D} M^{-1} \mu M^{-1T} m_{D}^{T}.$$

 $\lambda_5 \rightarrow 0$: neutrinos are massless: restore #L

Phenomenology

Scalar sector and constraints:

CP-even scalars: *h* and *H*

Imaginary part of the σ corresponds to the physical majoron $J = \text{Im } \sigma$

$$M_R^2 = \begin{bmatrix} \lambda_{\Phi} v_{\Phi}^2 & \lambda_{\Phi\sigma} v_{\Phi} v_{\sigma} \\ \lambda_{\Phi\sigma} v_{\Phi} v_{\sigma} & \lambda_{\sigma} v_{\sigma}^2 \end{bmatrix}$$

$$\begin{bmatrix} h \\ H \end{bmatrix} = O_R \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$

The coupling of SM Higgs boson to SM particles gets modified as:

$$h$$
SM $\rightarrow \cos \theta h - \sin \theta H$

Large invisible Higgs decay for
$$v_{\sigma} \sim \mathcal{O}(\text{TeV})$$

$$\Gamma(h \to JJ) = \frac{1}{32\pi m_h} \frac{m_h^4 \sin^2 \theta}{v_\sigma^2} \sqrt{1 - \frac{4m_J^2}{m_h^2}}$$

In case of
$$m_{\xi_{R/I}} < m_h/2$$
:

$$\Gamma(h \to \xi_R \xi_R) = \frac{1}{32\pi m_h} ((\lambda_{\xi\sigma} + \lambda_5) v_\sigma \sin\theta + \lambda_{\Phi\xi} v_\Phi \cos\theta)^2 \sqrt{1 - \frac{4m_{\xi_R}^2}{m_h^2}}$$
contributes to invisible decay

$$\Gamma(h \to \xi_I \xi_I) = \frac{1}{32\pi m_h} ((\lambda_{\xi\sigma} - \lambda_5) v_\sigma \sin\theta + \lambda_{\Phi\xi} v_\Phi \cos\theta)^2 \sqrt{1 - \frac{4m_{\xi_I}^2}{m_h^2}}$$
Note that, λ_5 is so small

Total invisible decay width: $\Gamma^{inv}(h) = \Gamma(h \to JJ) + \Gamma(h \to \xi_R \xi_R) + \Gamma(h \to \xi_I \xi_I)$

Collider constraints: Signal strength parameter and Invisible Higgs decay

For $\sin \theta = 0$, $h \to JJ$ is not present: constrain $\lambda_{\Phi\xi}$ from BR $(h \to \ln v) < 19\%$.

$$\lambda_{\Phi\xi} \left(1 - \frac{4m_{\xi}^2}{m_h^2} \right)^{\frac{1}{4}} \le 9.8 \times 10^{-3}$$

Constraint from direct search: $pp \rightarrow H \rightarrow WW \rightarrow 2\ell 2\nu$, $pp \rightarrow ZZ \rightarrow 4\ell$

If $m_H > 2m_h$, $pp \to H \to hh$ SM et al., arXiv: 2103.02670

But for $v_{\sigma} \gg v_{H}$, the constraint from the signal strength parameter is stronger.

Dark matter phenomenology

 \mathbb{Z}_2 symmetry: fermionic DM (*f*) or scalar DM ($\xi_{R/I}$)

In case of fermionic DM $f, Y_{\xi}\xi fS$ will determine the relic

Scalar DM: ξ_R if $\lambda_5 < 0$ or ξ_I if $\lambda_5 > 0$ $(m_{\xi_R}^2 - m_{\xi_I}^2 = \lambda_5 v_{\sigma}^2)$

Advantage: DM and LFV source is different for both fermionic and scalar dark matter

Source of LFV: $Y_{\nu^c} \overline{L} i \sigma_2 H^* \nu^c$

Annihilation channels

Close to complex scalar dark matter but not quite due to presence of majoron *J*

Relic density and direct detection

BP1: $\sin \theta = 0, \ \lambda_{\Phi\xi} = 0.01, \ \text{BP2:} \ \sin \theta = 0, \ \lambda_{\Phi\xi} = 0.1.$ **BP3:** $\sin \theta = 0.1, \ \lambda_{\Phi\xi} = 0.01, \ \text{BP4:} \ \sin \theta = 0.1, \ \lambda_{\Phi\xi} = 0.1.$

coannihiliation with ξ_I if mass splitting is small

Sizeable annihilation to JJ depending on the mixed quartic couplings

Direct Detection

$$\lambda_{h\xi_R\xi_R} = \lambda_{\Phi\xi} v_{\Phi} \cos\theta + (\lambda_{\xi\sigma} + \lambda_5) v_{\sigma} \sin\theta$$
$$\lambda_{H\xi_R\xi_R} = -\lambda_{\Phi\xi} v_{\Phi} \sin\theta + (\lambda_{\xi\sigma} + \lambda_5) v_{\sigma} \cos\theta$$
$$\sigma^{\mathbf{SI}} = \frac{\mu_N^2 m_N^2 f_N^2}{4\pi m_{\xi_R}^2 v_{\Phi}^2} \Big(\frac{\lambda_{h\xi_R\xi_R}}{m_h^2} \cos\theta - \frac{\lambda_{H\xi_R\xi_R}}{m_H^2} \sin\theta\Big)^2$$

The relative sign between the h and H contributions as: $h_{SM} \rightarrow \cos \theta h - \sin \theta H$

Compilation of relic density, DD and invisible Higgs decay

Fix:
$$m_H = 1$$
 TeV, $\sin \theta = 0$, $v_\sigma = 3$ TeV, $\lambda_{\xi} = 0.1$, $\lambda_{\xi\sigma} = 0.1$

Free parameter: $\lambda_{\Phi\xi}$

Correct relic: Along the cyan line

$0\nu\beta\beta$ and LFV

$$< m_{\beta\beta} > = \left| \sum_{j} U_{\nu,ej}^2 m_j \right| = \left| \cos \theta_{12}^2 \cos \theta_{13}^2 m_1 + \sin \theta_{12}^2 \cos \theta_{13}^2 m_2 e^{2i\phi_{12}} + \sin \theta_{13}^2 m_3 e^{2i\phi_{13}} \right|$$

10-10 Source of LFV: $Y_{\nu^c} \overline{L} i \sigma_2 H^* \nu^c$ MEG 10-12 $\mathbf{BR}(\ell_i \to \ell_j \gamma) = \frac{\alpha_w^3 s_w^2}{256\pi^2} \left(\frac{m_{\ell_i}}{M_W}\right)^4 \left(\frac{m_{\ell_i}}{\Gamma_{\ell_i}}\right) \left| \frac{v_H^2}{2M^2} (Y_{\nu^c} Y_{\nu^c}^{\dagger})_{ji} G_{\gamma} \left(\frac{M^2}{M_W^2}\right) \right|$ 10⁻¹⁴ 3R(µ→eγ) 10⁻¹⁶ $Y_{\nu^{c}} = \frac{\sqrt{2}}{v_{\Phi}} U_{\text{lep}}^{\dagger} \sqrt{\widehat{\mathscr{M}}_{\nu}} R \sqrt{\mathscr{M}_{R}} \text{ with } \mathscr{M}_{R}^{-1} = M^{-1} \mu M^{-1T}$ 10⁻¹⁸ 10-20 10-22 10⁻⁸ 10-6 10-4 10-2 100 $Tr(Y_{vc}^{\dagger}Y_{vc})$

Summary

SM lacks neutrino mass and dark matter. New physics is required.

The scotogenic model is a very economical scenario for neutrino masses that includes a dark matter candidate

We have studied a variant of scotogenic model in the framework of low-scale seesaw

generation of μ parameter through scotogenic loop

We have studied the scalar dark matter. The nature of dark matter is different from doublet η of scotogenic model

Presence of majoron modifies the invisible Higgs decay

Nature of dark matter is not excatly same as complex scalar dark matter due to the presence of majoron *J*

Thank You for your attention

Cubic and quartic couplings

λ_{abc}	Couplings in terms of Lagrangian parameter
$h\xi_R\xi_R$	$(\lambda_{\xi\sigma} + \lambda_5) v_\sigma \sin\theta + \lambda_{\Phi\xi} v_\Phi \cos\theta$
$H\xi_R\xi_R$	$(\lambda_{\xi\sigma} + \lambda_5) v_\sigma \cos\theta - \lambda_{\Phi\xi} v_\Phi \sin\theta$
$h\xi_I\xi_I$	$(\lambda_{\xi\sigma} - \lambda_5)v_{\sigma}\sin\theta + \lambda_{\Phi\xi}v_{\Phi}\cos\theta$
$H\xi_I\xi_I$	$(\lambda_{\xi\sigma} - \lambda_5) v_\sigma \cos\theta - \lambda_{\Phi\xi} v_\Phi \sin\theta$
$\xi_I \xi_R J$	$\lambda_5 v_{\sigma}$
hJJ	$m_h^2 \sin \theta / v_\sigma$
HJJ	$m_H^2 \cos \theta / v_\sigma$

λ_{abcd}	Couplings in terms of Lagrangian parameter
$hh\xi_R\xi_R$	$\lambda_{\Phi\xi}\cos^2\theta + (\lambda_{\xi\sigma} + \lambda_5)\sin^2\theta$
$hh\xi_I\xi_I$	$\lambda_{\Phi\xi}\cos^2\theta + (\lambda_{\xi\sigma} - \lambda_5)\sin^2\theta$
$HH\xi_R\xi_R$	$\lambda_{\Phi\xi}\sin^2\theta + (\lambda_{\xi\sigma} + \lambda_5)\cos^2\theta$
$HH\xi_I\xi_I$	$\lambda_{\Phi\xi}\sin^2\theta + (\lambda_{\xi\sigma} - \lambda_5)\cos^2\theta$
$JJ\xi_R\xi_R$	$\lambda_{\xi\sigma} - \lambda_5$
$JJ\xi_I\xi_I$	$\lambda_{\xi\sigma} + \lambda_5$