Imprint of the chiral symmetry restoration on observables in (2+1)-flavor QCD

Mugdha Sarkar, NTU (work done with HotQCD collaboration)

The Future is Illuminating June 28-30, 2022

- → Motivation & Introduction
- \rightarrow Methodology
- → Lattice setup
- → Results
- → Conclusions

ъ

イロン イヨン イヨン イヨン

QCD phase diagram in $T - \mu_B$ plane

ъ

イロト イボト イヨト イヨト

- first-principle non-perturbative controlled calculation with lattice
- sign problem at finite μ

э

$$T_{pc} = 156.5(1.5) \text{ MeV}$$
[HotQCD, PLB 795 (2019) 15–21]
$$T_{T_{pc}}$$

$$T_{c}$$

$$T_{tri}$$

$$T_{cep}$$
[Karsch, 1905.03936] μ_B

$$T_c = 132^{+3}_{-6} \text{ MeV}$$

æ

[HotQCD, PRL 123, 062002 (2019)]

- $ightarrow T_c$ a fundamental scale of QCD
- → Expected to belong to the universality class of 3d O(4) spin model [SU(2) × SU(2) ≈ O(4)] [Pisarski and Wilczek, PRD 29 338 (1984)]
- → Important for understanding the phase diagram at physical mass

[Hatta and Ikeda, PRD67 014028 (2003)]

э

ヘロマ ふぼ マイロマ

Columbia plot

Depending on $U_A(1)$ symmetry restoration relative to chiral symmetry restoration and number of flavors, the chiral phase transition can also be first order [Pisarski and Wilczek, PRD 29 338 (1984)]

[Philipsen and Pinke, PRD93, 114507, 2016]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Columbia plot

Depending on $U_A(1)$ symmetry restoration relative to chiral symmetry restoration and number of flavors, the chiral phase transition can also be first order [Pisarski and Wilczek, PRD 29 338 (1984)]

[Philipsen and Pinke, PRD93, 114507, 2016]

- → Variable N_f [Cuteri, Philipsen and Sciarra, 2107.12739] N_f = 3 [Dini et al, Phys.Rev.D 105 (2022) 3, 034510]
- → Effective U_A(1) restoration [Ding et al, PRL 126 (2021) 8, 082001]
- → Imprint on observables [Kaczmarek et al, 2010.15593]

The left scenario seems to be favored

(日)

ъ

Columbia plot

Depending on $U_A(1)$ symmetry restoration relative to chiral symmetry restoration and number of flavors, the chiral phase transition can also be first order [Pisarski and Wilczek, PRD 29 338 (1984)]

[Philipsen and Pinke, PRD93, 114507, 2016]

- → Variable N_f [Cuteri, Philipsen and Sciarra, 2107.12739] $N_f = 3$ [Dini et al, Phys.Rev.D 105 (2022) 3, 034510]
- → Effective U_A(1) restoration [Ding et al, PRL 126 (2021) 8, 082001]
- → Imprint on observables [Kaczmarek et al, 2010.15593]
- The left scenario seems to be favored

(日)

ъ

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

Mugdha Sarkar (NTU) Critical behavior towards chiral limit

6

æ.

ヘロト ヘロト ヘビト ヘビト

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

RG scaling equation

 $\overline{f_s(u_1, u_2, u_3, \ldots)} = b^{-d} f_s(b^{y_1}u_1, b^{y_2}u_2, b^{y_3}u_3, \ldots)$

э.

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

 $\frac{\mathsf{RG scaling equation}}{f_s(u_1, u_2, u_3, \ldots)} = b^{-d} f_s(b^{y_1} u_1, b^{y_2} u_2, b^{y_3} u_3, \ldots)$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

For
$$3d O(N)$$
 models
relevant fields $u_1 = u_t, u_2 = u_h$
with $y_t, y_h > 0$
infinitely many irrelevant fields
with $y_j < 0$

э.

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

 $\frac{\text{RG scaling equation}}{f_s(u_1, u_2, u_3, \ldots)} = b^{-d} f_s(b^{y_1}u_1, b^{y_2}u_2, b^{y_3}u_3, \ldots)$ Choose arbitrary scaling factor $b = u_h^{-1/y_h}$ $f_s(u_t, u_h, \ldots) = u_h^{d/y_h} f_s(u_t u_h^{-y_t/y_h}, 1, \ldots)$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

For 3d O(N) models relevant fields $u_1 = u_t, u_2 = u_h$ with $y_t, y_h > 0$ infinitely many irrelevant fields with $y_j < 0$

э

ヘロマ ふぼ マイロマ

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

 $\begin{array}{l} \hline \text{RG scaling equation} \\ \hline f_s(u_1, u_2, u_3, \ldots) = b^{-d} f_s(b^{y_1} u_1, b^{y_2} u_2, b^{y_3} u_3, \ldots) \\ \hline \text{Choose arbitrary scaling factor } b = u_h^{-1/y_h} \\ f_s(u_t, u_h, \ldots) = u_h^{d/y_h} f_s(u_t u_h^{-y_t/y_h}, 1, \ldots) \\ \hline \text{Close to the critical point } (t = h = 0), \ u_t = t, u_h = h \end{array}$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

For 3d O(N) models relevant fields $u_1 = u_t, u_2 = u_h$ with $y_t, y_h > 0$ infinitely many irrelevant fields with $y_j < 0$

(4 回) (4 回) (4 回)

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

 $\frac{\text{RG scaling equation}}{f_s(u_1, u_2, u_3, \ldots)} = b^{-d} f_s(b^{y_1}u_1, b^{y_2}u_2, b^{y_3}u_3, \ldots)$ Choose arbitrary scaling factor $b = u_h^{-1/y_h}$ $f_s(u_t, u_h, \ldots) = u_h^{d/y_h} f_s(u_t u_h^{-y_t/y_h}, 1, \ldots)$ Close to the critical point $(t = h = 0), u_t = t, u_h = h$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

For
$$3d O(N)$$
 models
relevant fields $u_1 = u_t, u_2 = u_h$
with $y_t, y_h > 0$
infinitely many irrelevant fields
with $y_j < 0$

$$\begin{array}{l} \mbox{Using } y_t = \frac{1}{\nu}, y_h = \frac{\beta \delta}{\nu} \\ 2 - \alpha = d\nu, \quad \gamma = \beta (\delta - 1), \\ d\nu = \beta (1 + \delta) \end{array} \end{array}$$

Free energy density
$$f(t,h) = -\frac{1}{V} \ln Z = f_s + f_r$$

 $\frac{\text{RG scaling equation}}{f_s(u_1, u_2, u_3, \ldots)} = b^{-d} f_s(b^{y_1}u_1, b^{y_2}u_2, b^{y_3}u_3, \ldots)$ Choose arbitrary scaling factor $b = u_h^{-1/y_h}$ $f_s(u_t, u_h, \ldots) = u_h^{d/y_h} f_s(u_t u_h^{-y_t/y_h}, 1, \ldots)$ Close to the critical point $(t = h = 0), u_t = t, u_h = h$ $f_s = h^{(2-\alpha)/\beta\delta} f_f(z)$

Universal scaling function $f_f(z)$ Scaling variable $z = \frac{t}{h^{\beta\delta}}$

dimensionless couplings

$$t=\frac{1}{t_0}\frac{T-T_c}{T_c}$$
 "reduced" temperature $h=\frac{H}{h_0}$ magnetization

For
$$3d O(N)$$
 models
relevant fields $u_1 = u_t, u_2 = u_h$
with $y_t, y_h > 0$
infinitely many irrelevant fields
with $y_j < 0$

ヘロト ヘヨト ヘヨト ヘヨト

э.

Critical behavior in vicinity of the chiral phase transition

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(T, \vec{\mu}, m_l) = h^{(2-\alpha)/\beta\delta} f_f(z) + f_r(T, \vec{\mu}, m_l)$$
infinite
volume
singular
regular

Mugdha Sarkar (NTU) Critical behavior towards chiral limit

Critical behavior in vicinity of the chiral phase transition

 $z_0 = h_0^{1/\beta\delta}/t_0$

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(T, \vec{\mu}, m_l) = h^{(2-\alpha)/\beta\delta} f_f(z) + f_r(T, \vec{\mu}, m_l)$$
infinite
singular regular
$$\vec{t} \equiv tt_0 = \left(\frac{T-T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T}\right)^2\right)$$

$$H \equiv hh_0 = \frac{m_l}{m_s}$$
"energy-like" coupling "magnetic-like" coupling
Scaling variable
$$\vec{z} = z_0 \bar{t} / H^{1/\beta\delta}$$
Chiral phase transition at
 $m_l \equiv m_u = m_d = 0 \ (h = 0)$
 $T = T_c \ (t = 0)$ at $\mu = 0$

э.

magnetic-like

 $rac{\partial^2 \ln Z}{\partial H^2} \ \sim H^{1/\delta-1} \ \sim H^{-0.79}$ divergence : strong

critical exponents					
	δ				
O(4)	-0.21	0.38	4.82		
O(2)	-0.017	0.349	4.78		
$\overline{Z(2)}$	+0.109	0.325	4.8		

magnetic-like	mixed
$rac{\partial^2 \ln Z}{\partial H^2}$	$rac{\partial^2 \ln Z}{\partial H \partial t}$
$\sim H^{1/\delta-1}$	$\sim H^{(eta-1)/eta\delta}$
$\sim H^{-0.79}$	$\sim H^{-0.34}$
divergence : strong	moderate

critical exponents					
lpha eta eta eta					
O(4)	-0.21	0.38	4.82		
O(2)	-0.017	0.349	4.78		
$\overline{Z(2)}$	+0.109	0.325	4.8		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Derivatives of free energy density / pressure

magnetic-like	mixed	energy-like	
$rac{\partial^2 \ln Z}{\partial H^2}$	$rac{\partial^2 \ln Z}{\partial H \partial t}$	$rac{\partial^2 \ln Z}{\partial t^2}$	
$\sim H^{1/\delta-1}$	$\sim H^{(eta-1)/eta\delta}$	$\sim H^{-lpha/eta\delta}$	
$\sim H^{-0.79}$	$\sim H^{-0.34}$	$\sim H^{+0.11}$	
divergence : strong	moderate	vanishes	

Conserved charge fluctuations are energy-like w.r.t to chiral phase transition (also Polyakov loop)

critical exponents					
	δ				
O(4)	-0.21	0.38	4.82		
O(2)	-0.017	0.349	4.78		
$\overline{Z(2)}$	+0.109	0.325	4.8		

Derivatives of free energy density / pressure

magnetic-like	mixed	energy-like
$rac{\partial^2 \ln Z}{\partial H^2}$	$rac{\partial^2 \ln Z}{\partial H \partial t}$	$\frac{\partial^2 \ln Z}{\partial t^2}$
$\sim H^{1/\delta-1}$	$\sim H^{(eta-1)/eta\delta}$	$\sim H^{-lpha/eta\delta}$
$\sim H^{-0.79}$	$\sim H^{-0.34}$	$\sim H^{+0.11}$
divergence : strong	moderate	vanishes

Conserved charge fluctuations are energy-like w.r.t to chiral phase transition (also Polyakov loop)

	critical exponents			
3d O(2) universality class		α	$oldsymbol{eta}$	δ
Su O(2) universality class	O(4)	-0.21	0.38	4.82
O(4) recovered in continuum limit	O(2)	-0.017	0.349	4.78
At our lattice spacing $T \sim 145$ MeV	Z(2)	+0.109	0.325	4.8

 ${\tt \ \ } {\tt \ \ }$ Gauge ensembles generated with HISQ fermion discretization

ъ

- ${\tt \ \ } {\tt \ \ }$ Gauge ensembles generated with HISQ fermion discretization
- ▷ Ensembles for smaller-than-physical quark (up, down) masses $m_l = ms/27, m_s/40, m_s/80, m_s/160$, keeping strange quark mass m_s fixed at physical value. Corresp. pion masses : 140 MeV, 110 MeV, 80 MeV, 58 MeV.

イロト イポト イヨト イヨト

- ⇒ Ensembles for smaller-than-physical quark (up, down) masses $m_l = ms/27, m_s/40, m_s/80, m_s/160$, keeping strange quark mass m_s fixed at physical value. Corresp. pion masses : 140 MeV, 110 MeV, 80 MeV, 58 MeV.
- \Rightarrow For scale setting, we use the kaon decay constant obtained in calculations with the HISQ action, i.e., $f_K=156.1/\sqrt{2}~{\rm MeV}$ [Bazavov et al. (MILC Collaboration), Proc. Sci., LATTICE2010 (2010) 074]

- ${\tt \ \ } {\tt \ \ }$ Gauge ensembles generated with HISQ fermion discretization
- ⇒ Ensembles for smaller-than-physical quark (up, down) masses $m_l = ms/27, m_s/40, m_s/80, m_s/160$, keeping strange quark mass m_s fixed at physical value. Corresp. pion masses : 140 MeV, 110 MeV, 80 MeV, 58 MeV.
- ➡ For scale setting, we use the kaon decay constant obtained in calculations with the HISQ action, i.e., $f_K = 156.1/\sqrt{2}$ MeV [Bazavov et al. (MILC Collaboration), Proc. Sci., LATTICE2010 (2010) 074]
- \Rightarrow Continuum limit not yet performed. Measurements done at the largest simulated volumes for each mass at fixed time extent $N_{\tau} = 8$.

(日)

- ▷ Ensembles for smaller-than-physical quark (up, down) masses $m_l = ms/27, m_s/40, m_s/80, m_s/160$, keeping strange quark mass m_s fixed at physical value. Corresp. pion masses : 140 MeV, 110 MeV, 80 MeV, 58 MeV.
- ➡ For scale setting, we use the kaon decay constant obtained in calculations with the HISQ action, i.e., $f_K = 156.1/\sqrt{2}$ MeV [Bazavov et al. (MILC Collaboration), Proc. Sci., LATTICE2010 (2010) 074]
- \Rightarrow Continuum limit not yet performed. Measurements done at the largest simulated volumes for each mass at fixed time extent $N_{\tau} = 8$.
- Computing resources : Jülich (Germany), Piz Daint (Switzerland), JLAB (USA), Bielefeld (Germany) and Wuhan (China) supercomputing facilities.

э

・ロット (雪) () () () ()

Results I : Polyakov loop and HQFE

Polyakov loop

$$P_{\vec{x}} \equiv \frac{1}{3} \operatorname{tr} \prod_{\tau} U_4\left(\vec{x}, \tau\right) \ , \ P \equiv \frac{1}{N_{\sigma}^3} \sum_{\vec{x}} P_{\vec{x}}$$

Heavy quark free energy

$$F_q(T,H) = -T \ln \langle P \rangle = -\frac{T}{2} \lim_{|\vec{x} - \vec{y}| \to \infty} \ln \langle P_{\vec{x}} P_{\vec{y}}^{\dagger} \rangle$$

In quenched limit
$$(m_q \rightarrow \infty)$$
,
 $\langle P \rangle = 0$: confinement
 $\langle P \rangle \neq 0$: deconfinement

Clarke, Kaczmarek, Karsch, Lahiri, MS, PRD 103, L011501 (2021)

э

・ロット (雪) () () () ()

Results I : Polyakov loop and HQFE

Polyakov loop

$$P_{\vec{x}} \equiv \frac{1}{3} \operatorname{tr} \prod_{\tau} U_4\left(\vec{x}, \tau\right) \ , \ P \equiv \frac{1}{N_{\sigma}^3} \sum_{\vec{x}} P_{\vec{x}}$$

Heavy quark free energy

$$F_q(T,H) = -T \ln \langle P \rangle = -\frac{T}{2} \lim_{|\vec{x} - \vec{y}| \to \infty} \ln \langle P_{\vec{x}} P_{\vec{y}}^{\dagger} \rangle$$

In quenched limit
$$(m_q \rightarrow \infty)$$
,
 $\langle P \rangle = 0$: confinement
 $\langle P \rangle \neq 0$: deconfinement

Clarke, Kaczmarek, Karsch, Lahiri, MS, PRD 103, L011501 (2021)

- $\stackrel{r}{\rightarrow} \mbox{ At large masses, inflection points of } \\ \langle P \rangle \mbox{ and } \left< \bar{\psi} \psi \right> \mbox{ seem to coincide } \\ [Cheng et al., PRD 77, 014511 (2008)] \mbox{ }$
- $\Rightarrow \text{ However at physical masses, no} \\ \text{inflection point observed in } \langle P \rangle \\ \text{around } T_{pc}$

[Clarke et al, PoS LATTICE2019, 194 (2020).]

・ 同 ト ・ ヨ ト ・ ヨ ト

Results I : Polyakov loop and HQFE

Polyakov loop

$$P_{\vec{x}} \equiv \frac{1}{3} \operatorname{tr} \prod_{\tau} U_4\left(\vec{x}, \tau\right) \ , \ P \equiv \frac{1}{N_{\sigma}^3} \sum_{\vec{x}} P_{\vec{x}}$$

Heavy quark free energy

$$F_q(T,H) = -T \ln \langle P \rangle = -\frac{T}{2} \lim_{|\vec{x} - \vec{y}| \to \infty} \ln \langle P_{\vec{x}} P_{\vec{y}}^{\dagger} \rangle$$

In quenched limit
$$(m_q \rightarrow \infty)$$
,
 $\langle P \rangle = 0$: confinement
 $\langle P \rangle \neq 0$: deconfinement

Clarke, Kaczmarek, Karsch, Lahiri, MS, PRD 103, L011501 (2021)

- $\begin{array}{l} \varsigma \\ At \text{ large masses, inflection points of} \\ \langle P \rangle \text{ and } \left< \bar{\psi} \psi \right> \text{ seem to coincide} \\ \\ \text{[Cheng et al., PRD 77, 014511 (2008)]} \end{array}$
- $\begin{array}{l} \Leftrightarrow \quad \mbox{However at physical masses, no} \\ \mbox{inflection point observed in } \langle P \rangle \\ \mbox{around } T_{pc} \\ \mbox{[Clarke et al, PoS LATTICE2019, 194 (2020).]} \end{array}$

Is the rapid change in $\langle P \rangle$ around T_{pc} still sensitive to the confinement-deconfinement transition or something else?

э.

ヘロマ ふぼ マイロマ

Polyakov loop as energy-like observable

- purely gluonic and invariant under chiral transformation

$$F_q/T = AH^{(1-\alpha)/\beta\delta} f'_f(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta}) + f_{\text{reg}}$$

$$f_{\rm reg}(T,H) = \sum_{i,j} a^r_{i,2j} t^i H^{2j} = \frac{a^r_{0,0} + a^r_{1,0} t^i}{a^r_{1,0}} t^i H^{2j}$$

– 5 parameter fit along with universal ${\cal O}(2)$ scaling function and critical exponents

< /i>
↓ /□ ▶

Polyakov loop as energy-like observable

- purely gluonic and invariant under chiral transformation

$$F_q/T = AH^{(1-\alpha)/\beta\delta} f'_f(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta}) + f_{\text{reg}}$$

$$f_{\rm reg}(T,H) = \sum_{i,j} a^r_{i,2j} t^i H^{2j} = a^r_{0,0} + a^r_{1,0} t^i$$

– 5 parameter fit along with universal ${\cal O}(2)$ scaling function and critical exponents

ъ

(日)

Polyakov loop as energy-like observable

- purely gluonic and invariant under chiral transformation

$$F_q/T = AH^{(1-\alpha)/\beta\delta} f'_f(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta}) + f_{\text{reg}}$$

$$f_{\rm reg}(T,H) = \sum_{i,j} a^r_{i,2j} t^i H^{2j} = a^r_{0,0} + a^r_{1,0} t^i$$

– 5 parameter fit along with universal ${\cal O}(2)$ scaling function and critical exponents

$$\langle P \rangle_{T,H} = \exp\left(-AH^{(1-\alpha)/\beta\delta}f'_f(z) - f_{\text{reg}}\right)$$

$$\left(\frac{\partial F_q(T,H)/T}{\partial H} = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} \equiv -\frac{1}{\langle P \rangle} \left\langle P \cdot \Psi \right\rangle - \left\langle P \right\rangle \left\langle \Psi \right\rangle\right)$$

Mugdha Sarkar (NTU) Critical behavior towards chiral limit

ъ

イロン イヨン イヨン イヨン

$$\underbrace{\left(\frac{\partial F_q(T,H)/T}{\partial H} = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} \equiv -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle\right)}_{\frac{1}{T} \frac{\partial F_q}{\partial H} = -AH^{(\beta-1)/\beta\delta} f'_G(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta})}$$
Divergent at 2nd order
$$\underbrace{\frac{1}{T} \frac{\partial F_q}{\partial H} = -AH^{(\beta-1)/\beta\delta} f'_G(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta})}_{\beta\delta} = -0.39, O(2)$$

э

$$\underbrace{\frac{\partial F_q(T,H)/T}{\partial H} = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} \equiv -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle}_{\frac{1}{T} \frac{\partial F_q}{\partial H}} = -AH^{(\beta-1)/\beta\delta} f'_G(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta})} \frac{\mathsf{Divergent}}{\beta\delta} = -0.39, O(2)$$

3 parameter fit

э

ヘロト ヘロト ヘビト ヘビト

$$\underbrace{\frac{\partial F_q(T,H)/T}{\partial H} = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} \equiv -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} \equiv -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \cdot \Psi \rangle - \langle P \rangle \langle \Psi \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial H} = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{for } I = -\frac{1}{\langle P \rangle} \langle P \rangle }_{\text{$$

æ

singular part				regula	ar part
$H_{\rm max}$	A	T_c	z_0	$a_{0,0}^r$	$a_{1,0}^r$
1/27	2.48(2)	145.6(3)	2.24(5)	2.74(1)	-34.4(7)
1/40	2.26(5)	144.2(6)	1.83(9)	2.81(3)	-27(1)

 $T_{c} \ \mathrm{and} \ z_{0} \ \mathrm{match}$ with earlier results

[HotQCD, PRL 123, 062002 (2019)]

э.

イロト イボト イヨト イヨト

singular part				regula	ar part
$H_{\rm max}$	A	T_c	z_0	$a_{0,0}^r$	$a_{1,0}^r$
1/27	2.48(2)	145.6(3)	2.24(5)	2.74(1)	-34.4(7)
1/40	2.26(5)	144.2(6)	1.83(9)	2.81(3)	-27(1)

 T_c and z_0 match with earlier results [HotQCD, PRL 123, 062002 (2019)]

$$T_c \frac{\partial F_q(T,H)/T}{\partial T} = A z_0 H^{-\alpha/\beta\delta} f_f''(z) + T_c \frac{\partial f_{\rm reg}(T,H)}{\partial T}$$

э.

イロト イボト イヨト イヨト

singular part			regula	ar part	
$H_{\rm max}$	A	T_c	z_0	$a_{0,0}^r$	$a_{1,0}^{r}$
1/27	2.48(2)	145.6(3)	2.24(5)	2.74(1)	-34.4(7)
1/40	2.26(5)	144.2(6)	1.83(9)	2.81(3)	-27(1)

 T_c and z_0 match with earlier results [HotQCD, PRL 123, 062002 (2019)]

$$T_c \frac{\partial F_q(T,H)/T}{\partial T} = A z_0 H^{-\alpha/\beta\delta} f_f''(z) + T_c \frac{\partial f_{\rm reg}(T,H)}{\partial T}$$

Characteristic spike develops for $H\sim 10^{-5}$ inaccessible in current lattice simulations.

Results II : Conserved charge fluctuations

[MS, Kaczmarek, Karsch, Lahiri, Schmidt, Acta Phys. Pol. B Proc. Suppl. 14, 383 (2021)]

$$\left(rac{p}{T^4} = oldsymbol{h}^{(2-lpha)/eta\delta} f_f(z) + ext{reg.}
ight)$$

$$\left(t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \boldsymbol{\kappa_2^X} \left(\frac{\mu_X}{T}\right)^2\right), \ X = B, Q, S\right)$$

ъ

• □ ▶ • □ ▶ • □ ▶

Results II : Conserved charge fluctuations

[MS, Kaczmarek, Karsch, Lahiri, Schmidt, Acta Phys. Pol. B Proc. Suppl. 14, 383 (2021)]

$$\left(rac{p}{T^4} = oldsymbol{h}^{(2-lpha)/eta\delta} f_f(oldsymbol{z}) + ext{reg.}
ight)$$

$$t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T} \right)^2 \right), \ X = B, Q, S$$

expected to behave as energy-like quantities

Conserved charge fluctuations at $\mu = 0$ (Singular part) :

$$egin{aligned} \chi^X_{2n} = -rac{\partial^{2n}p/T^4}{\partial(\mu_X/T)^{2n}} igg|_{\mu_X=0} \sim & -(2\kappa^X_2)^n \; H^{(2-lpha-n)/eta\delta} f^{(n)}_f(z) \end{aligned}$$

Results II : Conserved charge fluctuations

[MS, Kaczmarek, Karsch, Lahiri, Schmidt, Acta Phys. Pol. B Proc. Suppl. 14, 383 (2021)]

$$\left(rac{p}{T^4} = oldsymbol{h}^{(2-lpha)/eta\delta} f_f(oldsymbol{z}) + ext{reg.}
ight)$$

$$t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T} \right)^2 \right), \ X = B, Q, S$$

expected to behave as energy-like quantities

Conserved charge fluctuations at $\mu = 0$ (Singular part) : $\begin{aligned}
\chi_{2n}^{X} &= -\frac{\partial^{2n} p/T^{4}}{\partial (\mu_{X}/T)^{2n}} \Big|_{\mu_{X}=0} \sim -(2\kappa_{2}^{X})^{n} H^{(2-\alpha-n)/\beta\delta} f_{f}^{(n)}(z) & \text{measurable} \\
&\text{in HIC} \\
&\text{experiments}
\end{aligned}$

Second order charge fluctuations χ_2

 similar features as energy density

 $T_c = 144(2)$ MeV at $N_{\tau} = 8$ (yellow band)

э

4 /∃ > < ∃</p>

$$\chi^X_2(T_c,H)\sim -\kappa^X_2 H^{(1-lpha)/eta\delta} f^{(1)}_f(0) + ext{const. reg. term} + \mathcal{O}(H^2)$$

э

・ロト ・四ト ・ヨト ・ヨト

$$\chi^X_2(T_c,H)\sim -\kappa^X_2 H^{(1-lpha)/eta\delta} f^{(1)}_f(0) + ext{const. reg. term} + \mathcal{O}(H^2)$$

- expect straight line fit for $\chi_2(T_c, H)$ vs $H^{0.61}$ if scaling holds (O(2) exponents)

–
$$T_c \sim 144$$
 MeV for $N_{ au} = 8$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

$$\chi^X_2(T_c,H)\sim -\kappa^X_2 H^{(1-lpha)/eta\delta} f^{(1)}_f(0) + ext{const. reg. term} + \mathcal{O}(H^2)$$

- expect straight line fit for $\chi_2(T_c, H)$ vs $H^{0.61}$ if scaling holds (O(2) exponents)

–
$$T_c \sim 144$$
 MeV for $N_{ au} = 8$

$$\chi_2^X(T_c, H=0) - \chi_2^X(T_c, H=1/27) =$$
 Singular part of $\chi_2^X(T_c)$

э

(日)

$$\chi^X_2(T_c,H)\sim -\kappa^X_2 H^{(1-lpha)/eta\delta} f^{(1)}_f(0) + ext{const. reg. term} + \mathcal{O}(H^2)$$

- expect straight line fit for $\chi_2(T_c, H)$ vs $H^{0.61}$ if scaling holds (O(2) exponents)

–
$$T_c \sim 144$$
 MeV for $N_{\tau} = 8$

$$\chi^X_2(T_c,H=0)-\chi^X_2(T_c,H=1/27)={
m Singular}$$
 part of $\chi^X_2(T_c)$

Singular contribution to χ^B_2 at physical masses \sim 50%

э

イロト イボト イヨト イヨト

Mixed observables / Derivatives of observables w.r.t t and H

 $\begin{array}{l} \textbf{Quark Chiral condensate } \Sigma_{u} = \frac{m_{s}}{f_{K}^{4}} \left\langle \bar{u}u \right\rangle \Rightarrow \textit{magnetic-like observable} \\ \hline \Sigma_{u} \sim H^{1/\delta} f_{G}(z) + \textit{reg.} \end{array} \qquad \begin{array}{l} \textbf{Divergent already} \\ \textbf{for 2nd order} \\ \hline C_{2,B}^{\Sigma_{u}} \equiv \frac{\partial^{2}\Sigma_{u}}{\partial(\mu_{B}/T)^{2}} \sim -\kappa_{2}^{B} H^{(\beta-1)/\beta\delta} f_{G}'(z) + \textit{reg.} \end{array} \qquad \begin{array}{l} \textbf{f}_{G}^{-1} = -0.39, O(2) \\ \hline \end{array}$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Mixed observables / Derivatives of observables w.r.t t and H

 $\begin{array}{l} \textbf{Quark Chiral condensate } \Sigma_{u} = \frac{m_{s}}{f_{K}^{4}} \left\langle \bar{u}u \right\rangle \Rightarrow \textit{magnetic-like observable} \\ \hline \Sigma_{u} \sim H^{1/\delta} f_{G}(z) + \textit{reg.} \end{array} \qquad \begin{array}{l} \textbf{Divergent already} \\ \textbf{for 2nd order} \\ \hline C_{2,B}^{\Sigma_{u}} \equiv \frac{\partial^{2}\Sigma_{u}}{\partial(\mu_{B}/T)^{2}} \sim -\kappa_{2}^{B} H^{(\beta-1)/\beta\delta} f_{G}'(z) + \textit{reg.} \end{array} \qquad \begin{array}{l} \textbf{Divergent already} \\ \hline \frac{\beta-1}{\beta\delta} = -0.39, O(2) \end{array}$

э

$$\left(t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T}\right)^2\right), X = B, S\right)$$

Mugdha Sarkar (NTU) Critical behavior towards chiral limit

イロト イボト イヨト イヨト

æ.

$$\left(t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T}\right)^2\right), X = B, S\right)$$

Chiral limit curvature

・ロン ・四 と ・ ヨ と

ъ

$$\left(t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T}\right)^2\right), X = B, S\right)$$

Chiral limit curvature

$$\kappa_2^B \simeq \frac{T^2 \frac{\partial^2}{\partial \mu_B^2} f}{2T \frac{\partial}{\partial T} f}$$

Curvature at a given mass H from Taylor expansion $T_{pc}(\mu_B, H) = T_{pc}(0, H) \left(1 - \kappa_2^{B, H} \left(\frac{\mu_B}{T_{pc}(0, H)}\right)^2\right)$

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

$$\left(t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_2^X \left(\frac{\mu_X}{T}\right)^2\right), X = B, S\right)$$

Chiral limit curvature

$$\kappa_2^B \simeq \frac{T^2 \frac{\partial^2}{\partial \mu_B^2} f}{2T \frac{\partial}{\partial T} f}$$

Curvature at a given mass H from Taylor expansion $T_{pc}(\mu_B, H) = T_{pc}(0, H) \left(1 - \kappa_2^{B, H} \left(\frac{\mu_B}{T_{pc}(0, H)}\right)^2\right)$

Measurements from different groups in agreement

Curvature in the chiral limit

$$\overbrace{\kappa_{2}^{B} \simeq \frac{T^{2} \frac{\partial^{2}}{\partial \mu_{B}^{2}} f}{2T \frac{\partial}{\partial T} f}}^{Regular \ contributions}$$
(Regular contributions)

 \rightarrow proper choice of f such that regular terms are suppressed in the ratio

ъ

イロト イボト イヨト イヨト

Curvature in the chiral limit

$$\overbrace{\kappa_{2}^{B} \simeq \frac{T^{2} \frac{\partial^{2}}{\partial \mu_{B}^{2}} f}{2T \frac{\partial}{\partial T} f}}^{Regular contributions}$$

 \rightarrow proper choice of f such that regular terms are suppressed in the ratio

$$f = \Sigma_l \equiv \frac{m_s}{f_K^4} \left\langle \bar{\psi}_l \psi_l \right\rangle$$

divergent after another derivative

ъ

イロト イボト イヨト イヨト

Curvature in the chiral limit

$$\overbrace{\kappa_2^B \simeq \frac{T^2 \frac{\partial^2}{\partial \mu_B^2} f}{2T \frac{\partial}{\partial T} f}}^{Regular \ contributions)}$$
 (Regular contributions)

 \rightarrow proper choice of f such that regular terms are suppressed in the ratio

$$f = \Sigma_l \equiv \frac{m_s}{f_K^4} \left\langle \bar{\psi}_l \psi_l \right\rangle$$

divergent after another derivative

Curvature doesn't seem to change towards the chiral limit

э

(4回) (4回) (4回)

Conclusions and Outlook

- → Consistent with O(2) universality class in the chiral limit (O(4) in the continuum limit)
- → $\langle P \rangle$ and F_q/T seem to behave as energy-like observables w.r.t. chiral phase transition
- → Singular fit parameters match well with earlier results
- → Singular part at physical mass can be extracted
- \rightarrow Preliminary estimate of curvature in chiral limit consistent with physical mass

= nan

(日)

Conclusions and Outlook

- → Consistent with O(2) universality class in the chiral limit (O(4) in the continuum limit)
- → $\langle P \rangle$ and F_q/T seem to behave as energy-like observables w.r.t. chiral phase transition
- → Singular fit parameters match well with earlier results
- → Singular part at physical mass can be extracted
- \rightarrow Preliminary estimate of curvature in chiral limit consistent with physical mass

Thank you for your attention

= nar

・ロット (雪) () () () ()