Eikonal quasinormal modes and photon orbits of deformed Schwarzschild black holes

Che-Yu Chen

Institute of Physics, Academia Sinica, Taiwan

• **CYC, HWC, JST,** arXiv:2205.02433

The Future is Illuminating, NCTS, Taiwan, 28 June, 2022

Geometric-optics approximations for BHs

Black hole spacetimes with less symmetry
Deformed Schwarzschild spacetime

Conclusions

Geometric-optics approximations for BHs

Black hole spacetimes with less symmetry Deformed Schwarzschild spacetime

Conclusions

Black Hole Merger

Black Hole Merger: Ringdown and QNMs

───→ Time

Field propagation in BH spacetimes

$$\nabla^{\alpha}\nabla_{\alpha}A = \cdots$$

Black Hole Images

→ Time

Field propagation in BH spacetimes

$$\nabla^{\alpha}\nabla_{\alpha}A = \cdots$$

Black Hole Images

→ Time

Field propagation in BH spacetimes

$$\nabla^{\alpha}\nabla_{\alpha}A = \cdots$$

Photon propagation in BH spacetimes

 $k^{\alpha}k_{\alpha}=0$

Geometric-Optics (Eikonal) Approximations

Field propagation in BH spacetimes

$$\nabla^{\alpha}\nabla_{\alpha}A = \cdots$$

Photon propagation in BH spacetimes

 $k^{\alpha}k_{\alpha}=0$

Geometric-Optics (Eikonal) Approximations

Field propagation in BH spacetimes

 $\nabla^{\alpha}\nabla_{\alpha}A = \boldsymbol{O}(\boldsymbol{\lambda}/\boldsymbol{L}) \sim \boldsymbol{0}$

Photon propagation in BH spacetimes

 $k^{\alpha}k_{\alpha}=0$

How does the correspondence manifest in BH spacetimes?

- Spacetime symmetry is crucial
- Non-rotating BH:

Static and spherically symmetric $ds^2 = -A(r)dt^2 + \frac{dr^2}{B(r)} + r^2 d\Omega^2$

$$\left(\frac{d^2}{dr_*^2} + \omega^2\right)\Psi = V_g\Psi$$

- The potential for eikonal $(l \to \infty)$ QNMs: $V \approx \frac{A(r)}{r^2} l^2$
- The peak of the potential coincides with the photon sphere
 - Photon sphere equation: $\partial_r [A(r)/r^2] = 0$

Eikonal QNMs Correspondence

- The eikonal QNMs ($l \rightarrow \infty$) and the photon sphere

- $Re(\omega)$: $\leftrightarrow \Omega_c$ (orbital frequency of the photon sphere)
- $Im(\omega)$: $\leftrightarrow \lambda_c$ (Lyapunov exponent)

Cardoso, Miranda, Berti, Witek, Zanchin (2009)

Correspondence in Kerr Spacetime

• Separable geodesic equations (Carter constant), and separable wave equations

Wave Quantity	Ray Quantity	Interpretation	
ω_R	E	Wave frequency is same as energy of null ray	
		(determined by spherical photon orbit).	
т	L_{z}	Azimuthal quantum number corresponds to z angular momentum	
		(quantized to get standing wave in ϕ direction).	
A_{lm}^R	$\mathscr{Q} + L_z^2$	Real part of angular eigenvalue related to Carter constant	
		(quantized to get standing wave in θ direction).	
ω	$\gamma\!=\!-\mathscr{E}_I$	Wave decay rate is proportional to Lyapunov exponent	
		of rays neighboring the light sphere.	
A^{I}_{lm}	\mathscr{Q}_I	Nonzero because $\omega_I \neq 0$	
		(see Secs. II B 2 and III C 3 for further discussion).	

Yang et al. (2012)

Eikonal QNMs and BH Shadows

A simple relation formula (non-rotating BH)

$$\omega_R = \lim_{l \gg 1} \frac{l}{R_S}$$

Jusufi (2020), Cuadros-Melgar et al. (2020)

A general mapping exists for Kerr BHs

Jusufi (2020), Yang (2021)

• What if the black hole spacetime has less symmetry?

Geometric-optics approximations for BHs

Black hole spacetimes with less symmetry Deformed Schwarzschild spacetime

Deformed Schwarzschild Spacetime

$$g_{tt} = -\left(1 - \frac{2M}{r}\right) \left(1 + \epsilon A_j(r) \cos^j \theta\right) ,$$

$$g_{rr} = \left(1 - \frac{2M}{r}\right)^{-1} \left(1 + \epsilon B_j(r) \cos^j \theta\right) ,$$

$$g_{\theta\theta} = r^2 \left(1 + \epsilon C_j(r) \cos^j \theta\right) ,$$

$$g_{\varphi\varphi} = r^2 \sin^2 \theta \left(1 + \epsilon D_j(r) \cos^j \theta\right) ,$$

$$g_{tr} = \epsilon a_j(r) \cos^j \theta , \qquad g_{t\theta} = \epsilon b_j(r) \cos^j \theta ,$$

$$g_{r\theta} = \epsilon c_j(r) \cos^j \theta , \qquad g_{r\varphi} = \epsilon d_j(r) \cos^j \theta ,$$

$$g_{\theta\varphi} = \epsilon e_j(r) \cos^j \theta .$$

• A general axisymmetric deformation which excludes frame-dragging effects

• Small deformation: $|\epsilon| \ll 1$

Separability Issue of Master Wave Equation

- How to deal with the separability issue?
- Up to 1^{st} order of ϵ , one can use the projection method and obtain the ϵ -corrections on the zeroth order equation

Cano, Fransen, Hertog (2020)

• A Schrödinger-like master equation is attainable (up to 1^{st} order of ϵ)

$$(\partial_{r_*}^2 + \omega^2)\Psi_{lm} = V_{\text{eff}}(r, l, m)\Psi_{\text{lm}}$$

$|m| = l \gg 1$ Circular Photon Orbits

$$V_{\rm eff}(r) \approx \frac{l^2}{r^2} \left(1 - \frac{2M}{r}\right) \left[1 + \epsilon (A_0(r) - D_0(r))\right]$$

- Only deformations in g_{tt} and $g_{\varphi\varphi}$ components appear

Photon motion

- Planar circular photon orbits still exist, but not on equatorial plane (due to odd power of j in $\cos^{j} \theta$)
- Up to 1st of in ϵ , the radius of orbits is determined by

$$\partial_r \left[\frac{\left(1 - \frac{2M}{r}\right)}{r^2} \left(1 + \epsilon A_0 - \epsilon D_0\right) \right] = 0$$

$$V_{\rm eff}(r) \approx \frac{l^2}{r^2} \left(1 - \frac{2M}{r}\right) \left[1 + \epsilon \sum_{k=0}^{\infty} \frac{1}{4^k} C_k^{2k} (A_{2k} - C_{2k})\right]$$

- Only deformations in g_{tt} and $g_{\theta\theta}$ components appear

Photon motion

- Radial and latitudinal sectors are not separable
- Photon orbits $r(\theta)$ do not have constant r

- These photon orbits should
 - be periodic
 - form a class of limit cycles
- We can integrate the orbits along full periods: $\oint d\lambda = \oint \dot{\theta}^{-1} d\theta$
- Integrating the radial component of geodesic eqs., we have

$$o(\epsilon) \propto \int_{0}^{2\pi} d\theta \partial_{r} \ln \left| \frac{g_{tt}}{g_{\theta\theta}} \right|$$
$$= \int_{0}^{2\pi} d\theta \partial_{r} \left[\frac{f}{r^{2}} \left(1 + \epsilon \left(A_{j} - C_{j} \right) \cos^{j} \theta \right) \right]$$
$$\propto \partial_{r} \left[\frac{f}{r^{2}} \left(1 + \epsilon \sum_{k=0}^{\infty} \frac{1}{4^{k}} C_{k}^{2k} (A_{2k} - C_{2k}) \right) \right]$$

- These photon orbits should
 - be periodic
 - form a class of limit cycles
- We can integrate the orbits along full periods: $\oint d\lambda = \oint \dot{\theta}^{-1} d\theta$
- Integrating the radial component of geodesic eqs., we have

$$\left\langle \frac{d}{d\lambda} \left(g_{rr} \dot{r} \right) \right\rangle = \left\langle \partial_r F(r^*, \theta)(r - r^*) \right\rangle \qquad \text{definition of limit cycle} \\ = \partial_r F_0(r_P) \left\langle r - r^* \right\rangle + o(\epsilon) \quad \text{Lyapunov exponent is } O(1) \\ = 0$$

- These photon orbits should
 - be periodic
 - form a class of limit cycles
- We can integrate the orbits along full periods: $\oint d\lambda = \oint \dot{\theta}^{-1} d\theta$
- Integrating the radial component of geodesic eqs., we have

$$\left\langle \frac{d}{d\lambda} \left(g_{rr} \dot{r} \right) \right\rangle = \left\langle \partial_r F(r^*, \theta)(r - r^*) \right\rangle$$
 definition of limit cycle
$$= \partial_r F_0(r_P (r - r^*) + o(\epsilon)$$
 Lyapunov exponent is $o(1)$
$$= 0$$
 averaged radius along one period

Connect QNMs to photon geodesics

 The peak of the effective potential corresponds to the <u>averaged</u> <u>radius</u> of these orbits along one period

• This is true also for generic orbits, which corresponds to generic *m*

$$\begin{aligned} V_{\text{eff}}(r) &\approx l^2 \frac{f}{r^2} \left\{ 1 + \epsilon \sum_{k=0}^{\infty} \left(1 - \alpha^2 \right)^k 4^{-k} C_k^{2k} \left[\alpha^2 \,_2 F_1 \left(1, k + \frac{1}{2}; k+1; 1 - \alpha^2 \right) (A_{2k} - D_{2k}) \right. \right. \\ &+ \left. \frac{1 - \alpha^2}{2k + 2} \,_2 F_1 \left(1, k + \frac{1}{2}; k+2; 1 - \alpha^2 \right) (A_{2k} - C_{2k}) \right] \right\}, \end{aligned}$$

21

Geometric-optics approximations for BHs

Black hole spacetimes with less symmetry
Deformed Schwarzschild spacetime

Conclusions

- Geometric-optics approximation adopted in BH spacetime
 Correspondence between eikenel ONMs and photon orbits
 - Correspondence between eikonal QNMs and photon orbits
- Schwarzschild and Kerr: Using their symmetries
- What if the black hole spacetime has less symmetry?
- Eikonal correspondence through the definition of averaged radius along full closed photon orbits
- Future:
 - Non-axisymmetric deformations
 - Deformed Kerr
 - Observational implications

Conclusions

Thank you for your attention!

