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Second law of thermodynamics

system

bath

Entropy production
𝜎 ≔ Δ𝑆system + Δ𝑆bath

Second law of thermodynamics

𝝈 ≥ 𝟎

Quasi-static operation achieves equality.



Non quasi-static processes

Various NOT quasi-static processes:

Finite speed process

Relaxation process



Stronger bound than the second law?

Entropy production must be strictly larger than zero!

But we still do not know a better bound than the 
second law 𝝈 ≥ 𝟎!
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Setup of stochastic thermodynamics

heat bath

system

System evolves stochastically 
due to thermal noise

Colloidal particle

Setup throughout this talk
・Heat bath is in equilibrium

→describe as Markov process
・Consider classical system



Description of 
classical stochastic process

State: probability distribution 𝒑.
Time evolution of 𝑝 is given by master equation.

𝑑

𝑑𝑡
𝑝𝑤,𝑡 =෍

𝑤′

𝑅𝑤𝑤′𝑝𝑤′,𝑡

normalization condition: σ𝒘𝑹𝒘𝒘′ = 𝟎

(only 𝑅𝑤′𝑤′ is negative, others are nonnegative)

𝑤1

𝑤2

𝑤3

transition matrix



Definition of entropy production rate

Entropy production rate (single heat bath)

ሶ𝜎 = −෍

𝑤

𝛽𝐸𝑤
𝑑𝑝𝑤
𝑑𝑡

+
𝑑

𝑑𝑡
−෍

𝑤

𝑝𝑤 ln 𝑝𝑤

Entropy increase of bath
（𝑑𝑄/𝑇）

(Shannon) entropy 
increase of system



Detailed balance condition

Detailed balance (DB)
If distribution is canonical (equilibrium), there is no 
microscopic probability current.

𝑅𝑤𝑤′

𝑅𝑤′𝑤
= 𝑒−𝛽 𝐸𝑤−𝐸𝑤′

(For case of multiple baths, DB is imposed on each 
single bath)



Definition of entropy production rate

= ෍

𝑤,𝑤′

𝑅𝑤′𝑤𝑝𝑤 ln
𝑅𝑤′𝑤𝑝𝑤
𝑅𝑤𝑤′𝑝𝑤′

Entropy production rate (single heat bath)

ሶ𝜎 = −෍

𝑤

𝛽𝐸𝑤
𝑑𝑝𝑤
𝑑𝑡

+
𝑑

𝑑𝑡
−෍

𝑤

𝑝𝑤 ln 𝑝𝑤

Assuming detailed balance (DB)
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Background: Efficiency and power -
longstanding open problem

Key quantity of heat engine: efficiency and power.

Expectation: High efficiency implies less power.

Even worse, a very basic problem
“Does finite power engine attain Carnot efficiency?”
has still been an open problem!

But there has been no general proof…



Present situation (before our result)

• General frameworks (thermodynamics, linear 
irreversible thermodynamics) do not prohibit 
an engine with CE at finite power.

G. Benenti, K. Saito, and G. Casati, PRL 106, 230602 (2011).

K. Brandner, K. Saito, and U. Seifert, PRL 110, 070603 (2013).
V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).
K. Brandner, K. Saito, and U. Seifert, PRX 5, 031019 (2015).
K. Proesmans and C. Van den Broeck, PRL 115, 090601 (2015).

• In analyses on concrete models in linear regime, 
all models do not attain CE with finite power.

• General trade-off relation between power and 
efficiency has completely been elusive.



Setup of our result

Remarks
・Broken time-reversal symmetry → OK
・No detailed-balance → OK
・Nonlinear regime → OK
・Transient process → OK

Assumption
• Dynamics of the engine is described 

by classical Markov process
• Canonical distribution is invariant 

under the stochastic process

Bath 1

Bath 2



Main result (Inequality between heat 
flux entropy production)

𝐽Key quantities
𝐽: heat flux between bath and engine (in  

general, flux of conserved quantities)
ሶ𝜎:entropy production rate

𝑱 ≤ 𝜣 ሶ𝝈

Then, the following relation holds (case of single bath)

（Θ: coefficient depending on state defined later）

(N. Shiraishi, K. Saito, and H. Tasaki, PRL 117, 190601 (2016))



Multi-bath case

In a similar manner, Θ ≔ σ𝜈Θ𝜈 satisfies

෍

𝜈

𝐽𝜈 ≤ Θ ሶ𝜎

𝐽1

𝐽2 𝐽3



Power and efficiency (schematics)

There must exist isothermal processes, and they 
possess inevitable dissipation.

Cyclic process with two baths



Main result (Inequality between 
power and efficiency)

Cyclic process with two baths, work 𝑊 and efficiency 
𝜂 satisfies

𝑾

𝝉
≤ ഥ𝚯𝜷𝑳𝜼(𝜼𝑪 − 𝜼)

𝜏 ：cyclic time interval
ഥΘ：average of Θ (defined later)
𝛽𝐿：inverse temperature of cold bath
𝜂𝐶：Carnot efficiency

Efficiency 𝜂

Power 
𝑊

𝜏

0 𝜂C

(N. Shiraishi, K. Saito, and H. Tasaki, PRL 117, 190601 (2016))



𝑱 ≤ 𝜣 ሶ𝝈

Definition of Θ dependent on the 
conditions

Θ = Θ(1)：General case, but weak a little

Θ = Θ(2)：Case with DB, but strong

(e.g., systems with thermal wall)

(e.g., linear Langevin systems, discrete 
systems without magnetic field)



Key idea: dual transition rate

Def: dual transition rate

෨𝑅𝑤𝑤′ ≔
𝑅𝑤′𝑤𝑒

−𝛽𝐸𝑤

𝑒−𝛽𝐸𝑤′

Invariance of canonical dist. (σ𝑤𝑅𝑤′𝑤𝑒
−𝛽𝐸𝑤 = 0)

→normalization condition σ𝑤
෨𝑅𝑤𝑤′ = 0

ሶ𝜎: = ෍

𝑤,𝑤′

𝑅𝑤′𝑤𝑝𝑤 ln
𝑅𝑤′𝑤𝑝𝑤
෨𝑅𝑤𝑤′𝑝𝑤′



Definitions of key quantities

𝐽 = −෍

𝑤′

𝐸𝑤′

𝑑𝑃𝑤′

𝑑𝑡

= − ෍

𝑤,𝑤′

Δ𝐸𝑤′(𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′)

Heat flux

（Energy fluctuation：Δ𝐸𝑤′ ≔ 𝐸𝑤′ − 〈𝐸〉）

= − ෍

𝑤,𝑤′

𝐸𝑤′𝑅𝑤′𝑤𝑃𝑤



Lemma: Inequality for KL divergence

For σ𝑥 𝑝𝑥 = σ𝑥 𝑞𝑥, Kullback-Leibler divergence 
satisfies

𝐷 𝑝𝑥| 𝑞𝑥 ≔෍

𝑥

𝑝𝑥 ln
𝑝𝑥
𝑞𝑥

=෍

𝑥

𝑝𝑥 ln
𝑝𝑥
𝑞𝑥

+ 𝑞𝑥 − 𝑝𝑥

≥෍

𝑥

𝑐0 𝑝𝑥 − 𝑞𝑥
2

𝑝𝑥 + 𝑞𝑥 𝑐0 = 0.896…



Derivation of main result

= ෍

𝑤≠𝑤′

Δ𝐸𝑤′ 𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′

2

= ෍

𝑤≠𝑤′

Δ𝐸𝑤′ 𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′
𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′

𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′

2

≤ ෍

𝑤≠𝑤′

Δ𝐸𝑤′
2 𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′ ⋅ ෍

𝑤≠𝑤′

𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′
2

𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′

𝐽 2

Schwarz inequality σ𝑖 𝑎𝑖𝑏𝑖
2 ≤ (σ𝑖 𝑎𝑖

2) (σ𝑖 𝑏𝑖
2)

is used.



Derivation of main result

≤
1

𝑐0
෍

𝑤≠𝑤′

Δ𝐸𝑤′
2 𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′ ෍

𝑤≠𝑤′

𝑅𝑤′𝑤𝑃 𝑤 ln
𝑅𝑤′𝑤𝑃 𝑤

෨𝑅𝑤𝑤′𝑃 𝑤′

= ෍

𝑤≠𝑤′

Δ𝐸𝑤′ 𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′

2

= ෍

𝑤≠𝑤′

Δ𝐸𝑤′ 𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′
𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′

𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′

2

≤ ෍

𝑤≠𝑤′

Δ𝐸𝑤′
2 𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′ ⋅ ෍

𝑤≠𝑤′

𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′
2

𝑅𝑤′𝑤𝑃𝑤 + ෨𝑅𝑤𝑤′𝑃𝑤′

𝐽 2

= 𝛩 ሶ𝜎



Inequality between heat flux and 
entropy production rate

𝑱 ≤ 𝚯(𝟏) ሶ𝝈

𝚯(𝟏) ≔
𝟏

𝒄𝟎
σ𝒘≠𝒘′𝜟𝑬𝒘′

𝟐 𝑹𝒘′𝒘𝑷𝒘 + 𝑹𝒘𝒘′𝑷𝒘′

（We used

σ𝑤(≠𝑤′)
෨𝑅𝑤𝑤′ = − ෨𝑅𝑤′ 𝑤′ = −𝑅𝑤′ 𝑤′ = σ𝑤(≠𝑤′)𝑅𝑤𝑤′)

Θ(1) is a quantity similar to dynamical activity.



Case with detailed balance

Detailed balance

𝑅𝑤𝑤′

𝑅𝑤′𝑤
= 𝑒−𝛽 𝐸𝑤−𝐸𝑤′



Rewrite 𝐽 and 𝜎

𝐽 = − ෍

𝑤,𝑤′

𝐸𝑤′(𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′)

= −
1

2
෍

𝑤,𝑤′

(𝐸𝑤′ − 𝐸𝑤)(𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′)

In this case, ෩𝑹𝒘𝒘′ ≔ 𝑒−𝛽 𝐸𝑤−𝐸𝑤′ 𝑅𝑤′𝑤 = 𝑹𝒘𝒘′

（cf：𝐽 = −σ𝑤,𝑤′ Δ𝐸𝑤′(𝑅𝑤′𝑤𝑃𝑤 − ෨𝑅𝑤𝑤′𝑃𝑤′)）



ሶ𝜎 = ෍

𝑤≠𝑤′

𝑅𝑤′𝑤𝑃𝑤 ln
𝑅𝑤′𝑤𝑃𝑤
𝑅𝑤𝑤′𝑃𝑤′

=
1

2
෍

𝑤≠𝑤′

(𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′) ln
𝑅𝑤′𝑤𝑃𝑤
𝑅𝑤𝑤′𝑃𝑤′

≥
1

2
෍

𝑤≠𝑤′

2 𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′
2

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′

（cf: ሶ𝜎 ≥ σ𝑤≠𝑤′

𝑐0 𝑅
𝑤′𝑤

𝑃𝑤− ෨𝑅
𝑤𝑤′

𝑃
𝑤′

2

𝑅𝑤′𝑤𝑃𝑤+
෨𝑅𝑤𝑤′𝑃𝑤′

）

Rewrite 𝐽 and 𝜎



Inequality between heat flux and 
entropy production rate (strong)

𝑱 ≤ 𝚯(𝟐) ሶ𝝈

𝚯(𝟐) ≔
𝟏

𝟐
σ𝒘≠𝒘′ 𝑬𝒘′ − 𝑬𝒘

𝟐
𝑹𝒘′𝒘𝑷𝒘

(cf: Θ(1) ≔
1

𝑐0
σ𝑤≠𝑤′ 𝛥𝐸𝑤′

2 𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′ )



General properties of Θ

• Both Θ(1) and Θ(2) are proportional to system size 

→ The inequality 𝐽 ≤ Θ ሶ𝜎 is meaningful bound 
even in macroscopic case ( 𝐽, ሶ𝜎 ∝ 𝑉).

• Θ(2) =
𝛾 𝑝 2

𝛽𝑚2 for underdamped Langevin systems.

• In linear regime, Θ(2) = 𝜅 (thermal conductivity)

and equality holds ( 𝐽 = Θ ሶ𝜎).



Derivation of power-efficiency trade-off

Bath H

Bath L

Δ𝑆 = −𝛽𝐻𝑄𝐻 + 𝛽𝐿𝑄𝐿

𝜂 𝜂𝐶 − 𝜂 =
𝑊

𝑄𝐻

𝛽𝐿𝑄𝐿 − 𝛽𝐻𝑄𝐻
𝛽𝐿𝑄𝐻

Cyclic process with two baths
𝑄𝐻

𝑄𝐿

𝑊

=
𝑊Δ𝑆

𝛽𝐿𝑄𝐻
2

Thermodynamics leads to



Time integration of inequality

General inequality σ𝜈 𝐽𝜈 ≤ Θ𝜎

By integrating with time, and using Schwarz inequality

න
0

𝜏

𝑑𝑡෍

𝜈

𝐽𝜈

2

≤ න
0

𝜏

𝑑𝑡 Θ𝜎

2

≤ න
0

𝜏

𝑑𝑡Θ න
0

𝜏

𝑑𝑡𝜎 = 𝜏ഥΘΔ𝑆

𝑄𝐻 = ∫ 𝑑𝑡𝐽𝐻 etc. leads to 𝑸𝑯 +𝑸𝑳
𝟐 ≤ 𝝉ഥ𝚯𝚫𝑺

（ഥΘ ≔
1

𝜏
∫0
𝜏
𝑑𝑡Θ）



Derivation of power-efficiency trade-off

Bath H

Bath L

𝜂 𝜂𝐶 − 𝜂 =
𝑊Δ𝑆

𝛽𝐿𝑄𝐻
2 𝑄𝐻

𝑄𝐿

𝑊

𝑾

𝝉
≤ ഥ𝚯𝜷𝑳𝜼(𝜼𝑪 − 𝜼)

≥
𝑊

𝛽𝐿𝑄𝐻
2

𝑄𝐻 + 𝑄𝐿
2

𝜏ഥΘ

≥
𝑊

𝛽𝐿

1

𝜏ഥΘ



Related result: classical speed limit

Problem setting (speed limit): 
Given initial and final distributions 𝑝 and 𝑝′.
We want to transform 𝑝 to 𝑝′ quickly.

What is the cost of quick state transformation?



Classical speed limit inequality

ℒ 𝑝, 𝑝′ 2

2𝜎 𝐴
≤ 𝜏

ℒ 𝑝, 𝑝′ ≔ σ𝑤 |𝑝𝑤 − 𝑝𝑤
′ | : total variation distance

𝜎 : total entropy production

〈𝐴〉: averaged dynamical activity  
1

𝜏
∫0
𝜏
𝑑𝑡𝐴(𝑡)

(N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121, 070601 (2018))



What is dynamical activity?

𝐴(𝑡) ≔ ෍

𝑤,𝑤′

𝑅𝑤′𝑤𝑝𝑤(𝑡)

Dynamical activity: How frequently jumps occur.

Activity characterizes time-scale of dynamics.

Glassy dynamics:
Nonequilibrium steady state:

J. P. Garrahan, et al., PRL 98, 195702 (2007).

M. Baiesi, et al., PRL 103, 010602 (2009).

+1

+1

Activity
+1

−1

cf) Current



Physical meaning of our inequality

ℒ 𝑝, 𝑝′ 2

2𝜎 𝐴
≤ 𝜏

Length between initial and final states

Time-scale of dynamicsEntropy production:
Cost of quick state 
transformation



Derivation (instantaneous quantities)

=෍

𝑤

෍

𝑤′(≠𝑤)

𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′

≤෍

𝑤

෍

𝑤′(≠𝑤)

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′ ⋅ ෍

𝑤′(≠𝑤)

𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′ 2

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′

෍

𝑤

𝑑

𝑑𝑡
𝑝𝑤

≤ ෍

𝑤′≠𝑤

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′ ⋅ ෍

𝑤′≠𝑤

𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′ 2

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′

≤ 2𝐴 ሶ𝜎



Derivation (time integration)

ℒ 𝑝𝑖 , 𝑝𝑓 ≤෍

𝑤

න
0

𝜏

𝑑𝑡
𝑑

𝑑𝑡
𝑝𝑤

≤ න
0

𝜏

𝑑𝑡 2 ሶ𝜎𝐴 ≤ 2𝜏𝜎〈𝐴〉

This is the desired result!

𝓛 𝒑, 𝒑′ 𝟐

𝟐𝝈 𝑨
≤ 𝝉
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Problem: entropy production in 
thermal relaxation process

𝑡 = 0 𝑡 = 𝜏 𝑡 = ∞

Situation：relaxation process with a single heat bath 

in continuous time. Suppose detailed balance.

Goal：Deriving lower bound of entropy production 

within 0 ≤ 𝑡 ≤ 𝜏 (denoted by 𝜎 0,𝜏 )



Main resut

𝑡 = 0 𝑡 = 𝜏

𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )

𝑝(0) 𝑝(𝜏)

Entropy production is bounded by the distance 
between the initial and final distributions!



Significance

𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )

• Only for relaxation processes (It does not hold 
in general process).

• Equality holds for both 𝜏 = 0 and 𝝉 = ∞

• It does not hold in discrete time Markov chain.



Numerical demonstration

Setup：three-state model

Take a system with anomalous (two-step) relaxation.



Geometric visualization

Relation 𝝈 𝟎,𝝉 = 𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 −𝑫(𝒑(𝝉)||𝒑𝒆𝒒)

implies

𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)

𝑝(0)
𝑝(𝜏)

𝑝𝑒𝑞

larger than 
right angle!

Remark: 
KL-divergence ↔ square of distance



Restriction on possible trajectory

𝑝(0)
𝑝𝑒𝑞

Second law

Given both initial and equilibrium distribution.
What is possible pass of relaxation processes?

state space



Restriction on possible trajectory

𝑝(0)
𝑝𝑒𝑞

second law

始状態と平衡分布（温度）が与えられている際、
どのような緩和の経路がありうるのか？

state space

Obtained relation

𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)



Restriction on possible trajectory

Obtained relation

𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)

𝑝(0)
𝑝𝑒𝑞

second lawour result

×

×



Key relation: variational expression 
of entropy production rate

ሶ𝜎 = −
𝑑

𝑑𝑡
𝐷(𝑝(𝑡)||𝑝𝑒𝑞)

Because right-hand side equals

−
𝑑

𝑑𝑡
෍

𝑖

𝑝𝑖 ln 𝑝𝑖 − 𝑝𝑖 ln
𝑒−𝛽𝐸𝑖

𝑍
=

𝑑

𝑑𝑡
𝐻 𝒑 +

𝑑

𝑑𝑡
𝐸 = ሶ𝜎



Key relation: variational expression 
of entropy production rate

ሶ𝜎 = −
𝑑

𝑑𝑡
𝐷(𝑝(𝑡)||𝑝𝑒𝑞)

= 𝐦𝐚𝐱
𝒒

−
𝒅

𝒅𝒕
𝑫(𝒑(𝒕)||𝒒 −𝒕 )

𝑞(−𝑡)：distribution evolves backward in time 

under the same transition matrix with 𝑝(𝑡).



Schematic of variational expression

Green lines：KL divergence 𝐷(𝑝||𝑞)

Difference of solid line from dashed line takes 
maximum when 𝑞 = 𝑝𝑒𝑞.

ሶ𝜎 = max
𝑞

−
𝑑

𝑑𝑡
𝐷(𝑝(𝑡)||𝑞 −𝑡 )



Variational expression leads to 
bound on relaxation processes

𝑝(0)

𝑝 𝜏

𝑝(𝜏/2)

𝜎 0,𝜏/2 ≥ −න
0

𝜏/2

𝑑𝑡
𝑑

𝑑𝑡
𝐷(𝑝(𝑡)||𝑞 −𝑡 )

= 𝐷(𝑝(0)||𝑝 𝜏 )

= 𝑞(0)

From 𝜎 0,𝜏 ≥ 𝜎 0,𝜏/2 , we have

𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )



Proof of variational expression

𝑑

𝑑𝑡
𝐷(𝑝(𝑡)| 𝑞 −𝑡 − 𝐷(𝑝(𝑡)||𝑝𝑒𝑞) ≥ 0

for any 𝑞.

The left-hand side is equal to 

𝑑

𝑑𝑡
෍

𝑖

𝑝𝑖 𝑡 ln
𝑝𝑖
𝑒𝑞

𝑞𝑖 −𝑡

It suffices to prove



Proof of variational expression

We used



Proof of variational expression

（We used 𝑥 − 1 − ln 𝑥 ≥ 0）



Proof of variational expression

（We used 𝑥 − 1 − ln 𝑥 ≥ 0）



Summary

• Trade-off relation between power (speed) and 
efficiency (entropy production):

• Bound on entropy production in relaxation 
process:

𝝈 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 ) END

𝑱 ≤ 𝚯 ሶ𝝈

𝑾

𝝉
≤ ഥ𝚯𝜷𝑳𝜼(𝜼𝑪 − 𝜼)





Bound for non-Markovian engine

𝜼 ≤ 𝜼𝑪 −
𝑸𝑳

𝟐

𝟖𝜷𝑳𝑸𝑯𝒋𝒎𝒂𝒙
𝟐𝐯𝝉
𝝁

+ 𝐂
𝑫

• The slower process (large 𝜏) have better efficiency.
• The larger 𝑄𝐿 implies worse efficiency.

𝜏：time-interval of a cycle
𝑣, 𝜇, 𝐶：constants came from Lieb-Robinson bound
𝑗𝑚𝑎𝑥：maximum Fisher information per unit volume

𝐷：spatial dimension





Second law (reviewal)

Integration of entropy production rate is entropy 
production (entropy increase)

𝜎 = න
0

𝜏

𝑑𝑡 ሶ𝜎

ሶ𝜎 ≥ 0 implies 𝜎 ≥ 0.
（Both inequalities are called the second law）



Schematics (example)

State space is discrete and finite.
(for continuous systems, we take proper 
discretization and continuum limit)

（http://leading.lifesciencedb.jp/2-e009） （https://phys.org/news/2016-01-maxwell-demon-self-
contained-information-powered-refrigerator.html）

http://leading.lifesciencedb.jp/2-e009
https://phys.org/news/2016-01-maxwell-demon-self-contained-information-powered-refrigerator.html


Previous studies on power and 
efficiency

Overdamped Langevin system

Endoreversible thermodynamics
F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
P. Salamon and R. S. Berry, PRL 51, 1127 (1983).
B. Anderson, et.al., Acc. Chem. Res. 17, 266 (1984).
M. Esposito, et.al., PRL 105, 150603 (2010).

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).
E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Problems in these results
• Model specific.
• Most cases are in linear response regime.



Linear irreversible thermodynamics

𝑇1
𝜇1

𝑇2
𝜇2Ex) Thermoelectric transport

𝐽𝑖: heat flux 𝐹𝑖:temperature difference

𝐽𝑗: particle flux 𝐹𝑗: chemical potential difference

Using Onsager matrix 𝐿,

ሶ𝑆 = 𝐽𝑖𝐹𝑖 + 𝐽𝑗𝐹𝑗

𝐽𝑖 = 𝐿𝑖𝑖𝐹𝑖 + 𝐿𝑖𝑗𝐹𝑗
𝐽𝑗 = 𝐿𝑗𝑖𝐹𝑗 + 𝐿𝑗𝑗𝐹𝑗

→𝐿𝑖𝑖 ≥ 0, 𝐿𝑗𝑗 ≥ 0, 4𝐿𝑖𝑖𝐿𝑗𝑗 − 𝐿𝑖𝑗 + 𝐿𝑗𝑖
2
≥ 0

≥ 0 (second law)



Difference between with and 
without time-reversal symmetry

𝐿𝑖𝑗 = 𝐿𝑗𝑖 (Time-reversal symmetry) ሶ𝑆 = 0 → 𝐽𝑖 = 0

𝐿𝑖𝑗 ≠ 𝐿𝑗𝑖 (broken TRS) With proper 𝑋𝑗, ሶ𝑆 = 0 formally 

allow 𝑱𝒊 ≠ 𝟎 (Finite power is not excluded)

ሶ𝑆 =
1

𝐿𝑖𝑖
𝐽𝑖 +

𝐿𝑗𝑖 − 𝐿𝑖𝑗

2
𝑋𝑗

2

+
4𝐿𝑖𝑖𝐿𝑗𝑗 − 𝐿𝑖𝑗 + 𝐿𝑗𝑖

2

4𝐿𝑖𝑖
𝑋𝑗
2

≥
1

𝐿𝑖𝑖
𝐽𝑖 +

𝐿𝑗𝑖 − 𝐿𝑖𝑗

2
𝑋𝑗

2

Carnot efficiency⇔ ሶ𝑆 = 0

(G. Benenti, K. Saito, and G. Casati, PRL 106, 230602 (2011))



Constraint in mesoscopic transport

Unitarity of scattering matrix says

𝐿𝑖𝑖𝐿𝑗𝑗 + 𝐿𝑖𝑗𝐿𝑗𝑖 − 𝐿𝑖𝑗
2 − 𝐿𝑗𝑖

2 ≥ 0

Carnot efficiency is achievable 
only when 𝑥 = 1 (no magnetic 
field)

Efficiency at maximum power 
may be larger than 1/2

K. Brandner, K. Saito, and U. Seifert, PRL 110, 070603 (2013).
V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).



EMP is indeed larger than 1/2

V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).

Direct numerical calculation of AB effect.



Onsager matrix in cyclic process

K. Brandner, K. Saito, and U. Seifert, PRX 5, 031019 (2015).

𝐽𝑞：heat from hot bath/time
𝐽𝑤：extracted work/time

𝐹𝑞 ≔ 𝛽𝑐 − 𝛽𝐻
𝐹𝑤 ≔ Δ𝐻/𝑇𝐶

Δ𝐻

ሶ𝑆 = 𝐽𝑄𝐹𝑄 + 𝐽𝑤𝐹𝑤

We define Onsager matrix by 
using them.



Inequality for relative entropy

𝐷 𝑝𝑥| 𝑞𝑥 =෍

𝑥

𝑝𝑥 ln
𝑝𝑥
𝑞𝑥

+ 𝑞𝑥 − 𝑝𝑥

≥෍

𝑥

𝑐0 𝑝𝑥 − 𝑞𝑥
2

𝑝𝑥 + 𝑞𝑥
𝑐0 =

8

9

We used a relation: 𝑎 ln
𝑎

𝑏
+ 𝑏 − 𝑎 ≥

𝑐0 𝑎−𝑏 2

𝑎+𝑏
,

which is equivalent to 𝑦 ln 𝑦 + 1 − 𝑦 ≥
𝑐0 𝑦−1 2

𝑦+1
.



𝜎 = ෍

𝑤≠𝑤′

𝑅𝑤′𝑤𝑃𝑤 ln
𝑅𝑤′𝑤𝑃𝑤
𝑅𝑤𝑤′𝑃𝑤′

=
1

2
෍

𝑤≠𝑤′

(𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′) ln
𝑅𝑤′𝑤𝑃𝑤
𝑅𝑤𝑤′𝑃𝑤′

≥
1

2
෍

𝑤≠𝑤′

2 𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′
2

𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′

（cf: 𝜎 ≥ σ𝑤≠𝑤′

𝑐0 𝑅
𝑤′𝑤

𝑃𝑤− ෨𝑅
𝑤𝑤′

𝑃
𝑤′

2

𝑅𝑤′𝑤𝑃𝑤+
෨𝑅𝑤𝑤′𝑃𝑤′

）

𝐽 and 𝜎 with detailed balance



Case with detailed balance

Detailed balance

𝑅𝑤𝑤′

𝑅𝑤′𝑤
= 𝑒−𝛽 𝐸𝑤−𝐸𝑤′

Remark: we do NOT take time reversal of 𝑤.

This is different from 

𝑅𝑤𝑤′

𝑅†𝑤′∗𝑤∗

= 𝑒−𝛽 𝐸𝑤−𝐸𝑤′



Case of nonlinear Langevin equation

Desired relation is only 𝑹
𝒗′𝒗
𝟏,𝟏 = 𝑹

−𝒗′−𝒗
𝟏,𝟏 (detailed-

balance: DB)

𝐿1,1 ≔
𝛾(𝑣)

𝑚

𝜕

𝜕𝑣
⋅ 𝑣 +

1

𝛽𝑚

𝜕2

𝜕𝑣2

• If 𝛾 𝑣 = 𝛾(−𝑣), DB is satisfied.
• For one-dimensional systems, DB is satisfied.
• For two or more dimensional systems, if 

rotation does not change energy, we can apply 
the above discussion to radial direction.



Application to many-body and multi-
bath systems with Hamilton dynamics

𝑅𝑤𝑤′ = 𝑅𝑤𝑤′
0 +෍

𝜈

෍

𝑖

𝑅
𝑤𝑤′
𝜈,𝑖

Total transition rate is decomposed into

Hamiltonian dynamics
label of bath

label of particle

𝜈-th bath 𝑖-th particle



Hamilton and stochastic parts in 
underdamped Langevin system

𝐿 ≔ −𝑣
𝜕

𝜕𝑥
+

𝜕

𝜕𝑣
⋅ 𝛾𝑣 +

1

𝑚

𝑑𝑈

𝑑𝑥
+ 𝐵 × 𝑣 +

𝛾

𝛽𝑚

𝜕2

𝜕𝑣2

𝑑

𝑑𝑡
𝑃𝑥,𝑣 = 𝐿𝑃𝑥,𝑣

𝐿0 ≔ −𝑣
𝜕

𝜕𝑥
+

𝜕

𝜕𝑣
⋅

1

𝑚

𝑑𝑈

𝑑𝑥
+ 𝐵 × 𝑣

𝐿1,1 ≔
𝛾

𝑚

𝜕

𝜕𝑣
⋅ 𝑣 +

1

𝛽𝑚

𝜕2

𝜕𝑣2



Properties of 𝑅0 (𝐿0) and 𝑅𝜈,𝑖 (𝐿1,1)

• Effects of magnetic field, many-body interactions, 
inertia is taken in 𝑅0 (𝐿0).

• 𝑹𝟎 (𝑳𝟎) conserves both energy and entropy.
→ 𝑹𝟎 (𝑳𝟎) is irrelevant to 𝑱 and 𝝈!

𝐿0 ≔ −𝑣
𝜕

𝜕𝑥
+

𝜕

𝜕𝑣
⋅

1

𝑚

𝑑𝑈

𝑑𝑥
+ 𝐵 × 𝑣

𝐿1,1 ≔
𝛾

𝑚

𝜕

𝜕𝑣
⋅ 𝑣 +

1

𝛽𝑚

𝜕2

𝜕𝑣2

• 𝑅𝜈,𝑖 (𝐿1,1) acts only on velocity 𝑣, not position 𝑥.



Properties of 𝑅𝜈,𝑖 (𝐿1,1) in linear 
Langevin systems

For linear Langevin systems, corresponding 

transition rate 𝑅
𝑣′𝑣
1,1 satisfies 𝑹

𝒗′𝒗
𝟏,𝟏 = 𝑹

−𝒗′−𝒗
𝟏,𝟏 , which 

implies detailed balance.

𝐿1,1 ≔
𝛾

𝑚

𝜕

𝜕𝑣
⋅ 𝑣 +

1

𝛽𝑚

𝜕2

𝜕𝑣2

𝑣

𝑣′

−𝑣

−𝑣′

This reflect spatial 
symmetry of noise!



Θ in multi-particle case and 
thermodynamic limit

All of 𝐽, 𝜎, Θ ≔ σ𝑖Θ𝑖 are proportional to volume 𝑉

→ 𝐽 ≤ Θ𝜎 is meaningful even in 𝑽 → ∞.

𝐽 =෍

𝑖

|𝐽𝑖| ≤෍

𝑖

Θ𝑖𝜎𝑖

≤ ෍

𝑖

Θ𝑖 ෍

𝑖

𝜎𝑖

= Θ𝜎

𝑖-th particle



Upper bound of Θ(1)

By putting 𝑅𝑤𝑤 ≤ 𝑅𝑚𝑎𝑥, we have

Θ(1) ≤
1

𝑐0

𝑑

𝑑𝑡
Δ𝐸2 + 2𝑅𝑚𝑎𝑥 Δ𝐸

2



Discretization of transition rate

𝑃𝑝→𝑝±𝜖 ≔
𝛾

𝛽𝜖2
𝑒
−
𝛽
4𝑚

𝑝±𝜖 2−𝑝2
.

Then, in 𝜖 → 0 limit, master equation becomes

𝑑

𝑑𝑡
𝑃 𝑝 =

𝜕

𝜕𝑡

𝛾𝑝

𝑚
𝑃 𝑝 +

𝛾

𝛽

𝜕2

𝜕𝑝2
𝑃(𝑝)

which is Kramers equation.

We set



Discretization of transition rate

𝑃 𝑥,𝑝 → 𝑥,𝑝+𝜖 ≔
1

𝜖
𝐹(𝑥, 𝑝)

𝑃 𝑥,𝑝 → 𝑥+𝜖′,𝑝 ≔
1

𝜖′
𝑝

𝑚

𝑑

𝑑𝑡
𝑃 𝑥, 𝑝 = −

𝑝

𝑚

𝜕

𝜕𝑥
𝑃 𝑥, 𝑝 −

𝜕

𝜕𝑝
𝐹 𝑥, 𝑝 𝑃(𝑥, 𝑝)

Then, in 𝜖, 𝜖′ → 0 limit, master equation becomes

which is Liouville equation.

We set



The inequality is tight in linear regime

In Δ𝛽 ≪ 1, Fourier law tells 𝛽 + Δ𝛽

𝛽
𝐽 = 𝜅Δ𝛽 ➡ 𝜎 = Δ𝛽𝐽 = 𝐽2/𝜅

Inequality 𝐽2 ≤ Θ2𝜎 always becomes equality in 
the linear regime.

Fluctuation-dissipation like relation 𝐽2 𝑒𝑞 = 2𝜅

says 𝚯𝟐 = 𝜿

（𝜅：thermal conductivity）



Thermoelectricity

𝑇1
𝜇1

𝑇2
𝜇2

𝑇1 > 𝑇2, 𝜇2 > 𝜇1.
Heat current 𝐽𝑞, particle current 𝐽𝑛 flow along 1 → 2

Efficiency is defined as 𝜂𝐶 = 1 −
𝑇2

𝑇1
≥ 𝜂:=

Δ𝜇𝐽𝑛

𝐽𝑞−𝜇1𝐽𝑛

（Δ𝜇 ≔ 𝜇2 − 𝜇1 We assumed  𝐽𝑞 − 𝜇1𝐽𝑛 > 0）



Inequality for heat and particle currents

In a similar manner, we have

𝟐𝑱𝒒 ≤ 𝚯𝒒𝝈

𝟐𝑱𝒏 ≤ 𝚯𝒏𝝈

Here Θ𝑞 takes Θ1 or Θ2, Θ𝑛 is

Θ𝑛 ≔
9

8
෍

𝑤≠𝑤′

𝛥𝑁𝑤′
2 𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′



Power-efficiency trade-off in 
thermoelectricity

Using them, power and efficiency satisfy

𝚫𝝁𝑱𝒏 ≤
𝚯𝒒 + 𝝁𝟏

𝟐𝚯𝒏

𝟐
𝜷𝟐𝜼(𝜼𝑪 − 𝜼)

𝑇1
𝜇1

𝑇2
𝜇2



Quantum case and non-Markovian case

• We can extend our result to quantum Markov 
process by considering microscopic origin of 
quantum Markov process.

• Trade-off inequality between speed and 
efficiency for quantum non-Markovian system is 
derived with completely different approach 
(employing Lieb-Robinson bound and quantum 
information geometry)

(N. Shiraishi and H. Tajima, PRE 96, 022138 (2017))



“trivial” achievement of Carnot 
efficiency at finite power

𝐸1

𝐸0

𝛽𝐻 𝛽𝐿

𝑅10
𝐻 = 𝑘𝑒−

𝛽𝐻(Δ𝐸+𝐹)
2External force: 𝐹

𝑅01
𝐻 = 𝑘𝑒

𝛽𝐻(Δ𝐸+𝐹)
2

𝑅10
𝐿 = 𝑘𝑒−

𝛽𝐿Δ𝐸
2

𝑅01
𝐿 = 𝑘𝑒

𝛽𝐿Δ𝐸
2

Taking 𝐹 →
𝛽𝐿

𝛽𝐻
− 1 ΔE and 𝑘 → ∞ simultaneously,

both 𝜂 = 𝜂𝐶 and finite power are trivially achieved.

But, this is physically meaningless!



What we indeed investigate in 
“finite power and Carnot efficiency”?

Transition coefficient 𝑘 is inherent time-scale of 
system which cannot be changed externally.

Our problem is whether finite power and CE coexist 
with fixed time-scale parameter.





Speed limit: problem

Problem: Given Initial and final states (distributions).
How quick can we transform this state?

initial state

final state

We can tune how to 
change the control 
parameters.



Speed limit: known results

Quantum speed limit

Energy fluctuation bounds the speed of operation.
(Background: uncertainty relation)

Mandelstam-Tamm relation:
ℒ 𝜌𝑖 , 𝜌𝑓

Δ𝐸/ℎ
≤ 𝜏

(L. Mandelstam and I. Tamm, J. Phys. (USSR) 9, 249 (1945))

What about classical systems?



Classical speed limits: some attempts

Some formal extensions to classical 
Hamiltonian/stochastic systems

S. Deffner, New J. Phys. 19, 103018 (2017), B. Shanahan, A. Chenu, N. Margolus, 
A. del Campo, Phys. Rev. Lett. 120, 070401 (2018), M. Okuyama and M. Ohzeki, 
Phys. Rev. Lett. 120, 070402 (2018), S. Ito, arXiv:1712.04311.

Physical picture/meaning is highly unclear!

Overdamped Langevin systems
K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).
E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Physical picture is clear.
But system is very specific!



Setting and goal of this part

System: general Markov process on discrete states 
with detailed-balance condition.

Initial and final distributions (𝑝 and 𝑝′) are given.

ℒ 𝑝, 𝑝′ 2

■▲
≤ 𝜏

established physical quantities

What we want to obtain is…



Main result

ℒ 𝑝, 𝑝′ 2

2Σ 𝐴
≤ 𝜏

ℒ 𝑝, 𝑝′ ≔ σ𝑤 |𝑝𝑤 − 𝑝𝑤
′ | : total variation distance

Σ : total entropy production

〈𝐴〉: averaged dynamical activity ∫0
𝜏
𝑑𝑡𝐴(𝑡)



What is dynamical activity?

𝐴(𝑡) ≔ ෍

𝑤,𝑤′

𝑅𝑤′𝑤𝑝𝑤(𝑡)

Dynamical activity: How frequently jumps occur.

Activity determines time-scale of dynamics.

Glassy dynamics:
Nonequilibrium steady state:

J. P. Garrahan, et al., PRL 98, 195702 (2007).

M. Baiesi, et al., PRL 103, 010602 (2009).

+1

+1

Activity
+1

−1

cf) Current



Physical meaning of our inequality

ℒ 𝑝, 𝑝′ 2

2Σ 𝐴
≤ 𝜏

Length between initial and final states

Time-scale of dynamics 
(cf: Planck constant)

Entropy production:
Cost of quick state 
transformation



Fro systems without detailed-
balance condition

ℒ 𝑝, 𝑝′ 2

2Σ 𝐴
≤ 𝜏

Case with detailed-balance 
condition

𝑐0ℒ 𝑝, 𝑝′ 2

2ΣHS 𝐴
≤ 𝜏

Case without detailed-balance 
condition

Σ𝐻𝑆: Hatano-Sasa entropy production

(Heat 𝛽𝑄𝑤→𝑤′ is replaced by excess heat ln
𝑝
𝑤′
𝑠𝑠

𝑝𝑤
𝑠𝑠 )

(T. Hatano and S.-i. Sasa, Phys. Rev. Lett. 86, 3463 (2001))





Proof (technical part 1)

→

Normalization condition:

・・・☆

We used ☆



Proof (technical part 2)

We just exchange the dummy 
indexes i and j

normalization 
condition



Corresponding fluctuation theorem

This relation (variational expression) is not derived 
from the conventional FT, but derived from a little 
modified FT:


