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Some bounds on entropy
production stronger than the
second law of thermodynamics

Naoto Shiraishi (Gakushuin University)

nirais
nirais
nirais

nirais

ni, K. Saito, and H. Tasaki, PRL 117, 190601 (2016).
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Second law of thermodynamics

system

O O .
O Entropy production

‘ bath | 0 = ASsystem + ASpatn

Second law of thermodynamics
o=0

Quasi-static operation achieves equality.



Non quasi-static processes

Various NOT quasi-static processes:

Finite speed process

%
%o|—q000|—

Relaxation process

\J = \J =\/




Stronger bound than the second law?

Finite speed process

Q0

— -

Relaxation process

O

O

(VEAVE AV

Entropy production must be strictly larger than zero!

But we still do not know a better bound than the

second law o = 0!
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Setup of stochastic thermodynamics

System evolves stochastically = 7 ey
. L &

due to thermal noise & &
Colloidal particle

Setup throughout this talk [system l
- Heat bath is in equilibrium 4

—>describe as Markov process
* Consider classical system

heat bath




Description of

classical stochastic process

State: probability distribution p.
Time evolution of p is given by master equation.

d \
Epw,t — Z RWW pw’,t
W’

transition matrix

normalization condition: 2w Ry’ = 0

(only R,,,,, is negative, others are nonnegative)



Definition of entropy production rate

Entropy production rate (single heat bath)

dpy,
. .
° Eﬁw dt
w

I

d
| o Epwlnpw
W

~—

p
Entropy increase of bath

 (dQ/T)

\

((Shannon) entropy

_increase of system

J




Detailed balance condition

Detailed balance (DB)
If distribution is canonical (equilibrium), there is no
microscopic probability current.

RWW’ — e —,B(EW—EW/)

Rw’w

(For case of multiple baths, DB is imposed on each
single bath)



Definition of entropy production rate

Entropy production rate (single heat bath)

. dpy  d
O-:_EﬁEW d;/v | dt( zpwlnpw)
w w

R, ./ p
— R , l w wr'w
zr wiwbw rlwa’pw’
w,wW

Assuming detailed balance (DB) ]
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Background: Efficiency and power -
longstanding open problem

Key quantity of heat engine: efficiency and power.

Expectation: High efficiency implies less power.

But there has been no general proof...

Even worse, a very basic problem
“Does finite power engine attain Carnot efficiency?”
has still been an open problem!



Present situation (before our result)

 General frameworks (thermodynamics, linear
irreversible thermodynamics) do not prohibit

an engine with CE at finite power.
G. Benenti, K. Saito, and G. Casati, PRL 106, 230602 (2011).

* In analyses on concrete models in linear regime,

all models do not attain CE with finite power.

K. Brandner, K. Saito, and U. Seifert, PRL 110, 070603 (2013).

V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).
K. Brandner, K. Saito, and U. Seifert, PRX 5, 031019 (2015).

K. Proesmans and C. Van den Broeck, PRL 115, 090601 (2015).

* General trade-off relation between power and
efficiency has completely been elusive.



Setup of our result

Assumption Bath 1 J
* Dynamics of the engine is described =
by classical Markov process © C? I—
* Canonical distribution is invariant
under the stochastic process (Bath , ]
Remarks

* Broken time-reversal symmetry - OK
- No detailed-balance - OK

* Nonlinear regime - OK

* Transient process - OK



Main result (Inequality between heat
flux entropy production)

Key quantities
J: heat flux between bath and engine (in

general, flux of conserved quantities)
o:entropy production rate

Then, the following relation holds (case of single bath)

J| <VOé

(©: coefficient depending on state defined later)

(N. Shiraishi, K. Saito, and H. Tasaki, PRL 117, 190601 (2016))



Multi-bath case

In a similar manner, 0 := )., 0, satisfies

> Il < V83

g g

J1




Power and efficiency (schematics)

Cyclic process with two baths

)

[
X

=)

.

J

O©O
O

(

— =)

1

L

=

7

There must exist isothermal processes, and they
possess inevitable dissipation.



Main result (Inequality between
power and efficiency)

Cyclic process with two baths, work W and efficiency
satisfies
! w

— = OB (e —Nn)

T . cyclic time interval
® : average of O (defined later)
f; . inverse temperature of cold bath

nc + Carnot efficiency

Ule
Efficiency n

(N. Shiraishi, K. Saito, and H. Tasaki, PRL 117, 190601 (2016))




Definition of ® dependent on the
conditions

J| <VOé

® = 0 : General case, but weak a little

(e.g., systems with thermal wall)

® = 03 : Case with DB, but strong

(e.g., linear Langevin systems, discrete
systems without magnetic field)



Key idea: dual transition rate

Def: dual transition rate
RW’We_BEW

~

R. =
ww 8_'8EW,

Invariance of canonical dist. ()., RWIWQ_'BEW = ()
—>normalization condition },,, R, = 0

0:= z R, wPw ln > wiwBw
w'Pw’




Definitions of key quantities

dP '
Heat flux zE '

= — Z E. /R, P,
w,w/!

— = 2 AEWI(RW'WPW — RWW W’)

(Energy fluctuation : AE ,» := E,» — (E))




Lemma: Inequality for KL divergence

For )., P, = X.x G+, Kullback-Leibler divergence
satisfies

D (pyxllgy) = pr ln—

prln_‘l'cbc Px

> Z CO(px o CIx)z
4 Pxtx (co = 0.896...)




IA

r\ N
Schwarz inequality |Ziaibi|2 < (Ziaiz) (Zibiz)
is used.

Derivation of main result

ZAE /(Ry'wPw — R

wzw'

_ R, .P,—R, 1P,
z AEW,\/RW’WPW-I_RWW’PW’ S XVW =
‘JRwﬁmP 4'RWMIPW

wxw'

2

whw —R
w'w ww

wxw' wzw/

J




Derivation of main result

JI?
2
= z AE,1(Ryr Py — Ry Py
wzw' i
N R,,B, —R, 1P,
- z AEW'\/RW’WPW + Ryw' Py e XVW =
wEw/’ \/RW’WPW + RWW’PL/V’ ,
~ R, P,—R., 1P i
= Z AE\i’ (RW,WPW-I_RWW’PW’). Z ( W 7 W)
/ / RyrwBy + Ry Py
WEW WEW
! > Ry P(W)
= Con z AEVZV’ (RW’WPW + RWW'PW’) z R, ,P(w) lnﬁw V,VP(W,)
OW-‘/—'W’ wEw/ ww

= 0o



Inequality between heat flux and
entropy production rate

J| <VOWg

1
O = =% sw AE Ry Py + Ry Py)

O js a quantity similar to dynamical activity.

(We used

ZW(¢W') RWW' = _RW' w' = _Rw' w' T Zw(iw’) RWW’)

~



Case with detailed balance

Detailed balance

Rvwwi
ww — e_:B(EW_EW’)

RW’W



Rewrite /] and o

In this case, R, = e_ﬁ(EW_Ew’)RWrW =R,

ww

zEW,(R By =R, P 1)
=——2(E  — Ew)(Ry v Py — Ry’ Pyt

(cf:J==X,wAE, (R, Py—R

ww' w’))



Rewrite /] and o

zR PlR’P
g = / n PW'

wzw'
R, .., P,
— 5 Z,(RW’WPW — Ry, W’) In RV‘;VW‘:VPWI
WEW
> 1 2(RW’WPW _ RWW W’)z
2 , R,,rwBy + Ry Pyt
WEW

co(R,, 1, Pw—R , 1 W,) )

R, 1., Pw +§ww’ P,

(cf:a =,



Inequality between heat flux and
entropy production rate (strong)

J| <VO@¢

1 2
0 = Ezw:tw'(Ew' - EW) Ry Py

1
(CfZ @(1) — C_OZthW, AEVZV/ (RW’WPW + RWW’PW'))



General properties of 0

Both @) and ©(2) are proportional to system size

- The inequality |/| < V00 is meaningful bound
even in macroscopic case ( /, 0 < V).

2) _ s¥lpl? :
O\4) = <,Bm2> for underdamped Langevin systems.

In linear regime, @(2) = k (thermal conductivity)
and equality holds (|J| = VOa).



Derivation of power-efficiency trade-off

Cyclic process with two baths | BathH |
Qn
Thermodynamics leads to CF, W
AS = —fpQy + fL0y QL
[ Bath L ]
n(e —n) = W 5,QL — buQn
- Qu BLQx
WAS

" BLQ2



Time integration of inequality

General inequality ),|/,| < VOo

By integrating with time, and using Schwarz inequality

( J TdtZle)z < ( [ Zdtm)i
< (j;) dt@) (j;) dtG) = 70AS

(0 = %for dto )
Qy = | dt]y etc. leadsto (Qy + Q)% < TOAS



Derivation of power-efficiency trade-off

~ WAS | BathH |
TI(T]C 77) — ,BLQI%] QH .

- W (Qy+ Qp)* 0,

B :BLQI%I 70

[ Bath L ]

w1




Related result: classical speed limit

Problem setting (speed limit):
Given initial and final distributions p and p'.

We want to transform p to p’ quickly.

What is the cost of quick state transformation?

- — e

>
t=0 =t




Classical speed limit inequality

L(p,p") = Xw|pw — p, | : total variation distance
o : total entropy production

(A): averaged dynamical activity %for dtA(t)

(N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121, 070601 (2018))



What is dynamical activity?
Dynamical activity: How frequently jumps occur.

A = ) Ryrpu(®

w, W/

Activity characterizes time-scale of dynamics.

Activity cf) Current
+1 +1
= =
> =

Glassy dynamics: J. P. Garrahan, et al., PRL 98, 195702 (2007).
Nonequilibrium steady state: M. Baiesi, et al., PRL 103, 010602 (2009).



Physical meaning of our inequality

[Length between initial and final states]

/

L(p,p")?

< T

(Entropv production:
Cost of quick state
_ transformation

20(4) —

Time-scale of dynamics]

J




Derivation (instantaneous quantities)

<

IA

\

2

(Ry'wPy — Ryyw'Py1)?
R, P, + R, P,r) - 2
2 ( w/wiw ww!'Tw ) Ry Py + Ry Poyr

wI(#£w) wI(£WwW)

R,i,P,— R, 1P, )2
Z(RW’WPW_I'RWW’PW’)'Z ( =z = W)

RW’WPW + RWW’PW’

WI+W WI+W

< V240



Derivation (time integration)

t d
L(pi:pf) < ZJ dt apw
0
w
T
Sf dtV20A < \/ZTO'(A)
0

This is the desired result!

L(p,p")* -,
20(A)
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Problem: entropy production in
thermal relaxation process

Situation : relaxation process with a single heat bath
in continuous time. Suppose detailed balance.

Goal : Deriving lower bound of entropy production

within 0 < t < 7 (denoted by gy )



Main resut

Entropy production is bounded by the distance
between the initial and final distributions!



Significance

Only for relaxation processes (It does not hold
in general process).

Equality holds for both7 = 0 and T = oo

It does not hold in discrete time Markov chain.



Numerical demonstration

Setup : three-state model
Take a system with anomalous (two-step) relaxation.

__ '- -
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i i
i ' 4
i 4
ST e - - - -
B ¥ 4
I 7 J10,7]
| ’ _
N R LR T D{(p(O)||p(r))
B —— e ! " L " L "
10 1000 10° 10



Geometric visualization

Relation a9 ;1 = D(p(0)|[p°?) — D(p(7)|Ip°Y)
implies

D(p(0)|Ip*D) = D(p(0)||p(D)) + D(Pp(D)||p°?)

p(0)

Remark: p(7)

KL-divergence <= square of distance
larger than

right angle!

p©?



Restriction on possible trajectory

Given both initial and equilibrium distribution.
What is possible pass of relaxation processes?

Second law

state space




Restriction on possible trajectory

Obtained relation
D(p(0)|Ip¢?) = D(p(0)||p(7)) + D(p(7)||p?)

second law

p(0)

state space




Restriction on possible trajectory

Obtained relation
D(p(0)|Ip¢?) = D(p(0)||p(7)) + D(p(7)||p?)

second law

our result




Key relation: variational expression
of entropy production rate

Because right-hand side equals

d
6= =—DPOIIP*)

ZPL Inp; —p; In-

o—PBE;

Z

dooodo
~ (P)‘l'a( ) =0



Key relation: variational expression
of entropy production rate

d
6= =—DPOIIP*)

) _
= max _—ED(P(t)IIq(—t))_

q(—t) : distribution evolves backward in time
under the same transition matrix with p(t).



Schematic of variational expression

. d ‘
o= e —ED(p(t)IIq(—t))

Green lines : KL divergence D (p||q)

Difference of solid line from dashed line takes
maximum when g = p°®9.



Variational expression leads to
bound on relaxation processes

T/2 d
o= = [ dt=DEOlla-0)
0

= D(p(0)|Ip(2)) P(0)

p(t/2)

From a[o 7] 2 0[0,¢/2], We have
010 = D(p(0)||p(7)) p(7)
= q(0)



Proof of variational expression

It suffices to prove

d
—[D®I|q(-1)) — D(P®|Ip*H] = 0
for any gq.

The left-hand side Is equal to

d




Proof of variational expression

q.
We used 2 Rip;ln (p ) = —Rj;p;jIn (p” )
i(#£5) J



Proof of variational expression

(Weusedx —1—1nx > 0)



Proof of variational expression

1#£] 2753
iiq 1
=) Rip;In ( : j) + > Ryp; RJ Z Rijp;
oy Rjiqi vy ij 4 vy
1Y Rz 1
5 [ ()
Iy @g% Riij

20 (Weusedx —1—Inx = 0)



Summary

Trade-off relation between power (speed) and
efficiency (entropy production):

J| < V0o
14
P OB (e —n)

Bound on entropy production in relaxation
process:

o> D(p(0)|lp(r)) END






Bound for non-Markovian engine

(QL)*

2VT
U

n=1c

801QHjmax (

T . time-interval of a cycle
v, U, C . constants came from Lieb-Robinson bound
Jmax + Maximum Fisher information per unit volume
D : spatial dimension

 The slower process (large ) have better efficiency.
* Thelarger Q; implies worse efficiency.






Second law (reviewal)

Integration of entropy production rate is entropy
production (entropy increase)

T
azfdta'
0

o= 0 implieso = 0.
(Both inequalities are called the second law)



Schematics (example)

(b) 77|~ 4

Ag144 @Gl eg‘l> Ag144 @Gl 269& Ag144 @2@9 | 5
Gl@126 Glu 126 Glu 126 © I V-
I % BET LRI h I : : |:> ﬂ;
AE144 D O luzes 47_, Ag144@®) @Gl 269 47_, A5144® @GI u269 T l ‘
G|u€1—>26 @ Glc?zs @ l Glu 126 Cv -

(http://leading.lifesciencedb.jp/2-e009) (https://phys.org/news/2016-01-maxwell-demon-self-
contained-information-powered-refrigerator.html)

State space is discrete and finite.
(for continuous systems, we take proper
discretization and continuum limit)


http://leading.lifesciencedb.jp/2-e009
https://phys.org/news/2016-01-maxwell-demon-self-contained-information-powered-refrigerator.html

Previous studies on power and
efficiency

Endoreversible thermodynamics |
F Engine
T)

F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
P. Salamon and R. S. Berry, PRL 51, 1127 (1983).

B. Anderson, et.al., Acc. Chem. Res. 17, 266 (1984). [ T
M. Esposito, et.al., PRL 105, 150603 (2010).

J,=K(T-

Baths

Overdamped Langevin system

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997). \/ U
E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Problems in these results
 Model specific.
* Most cases are in linear response regime.




Linear irreversible thermodynamics

— —

Iy T,
Ex) Thermoelectric transport H U
T —
J;: heat flux F;:temperature difference

Jj: particle flux  F;: chemical potential difference

Using Onsager matrix L,
Ji = Ly + LijF;
Jj = Ljikj + Ljjk;

S =J;F; + JiF; = 0 (second law)

2
>L; =0,L;; =0,4L;L;; — (L + L) =0




Difference between with and
without time-reversal symmetry

2 2
1 L. —L.. AL L:: — (L:: + Lo
5=—<]i+ ji lJXj> L il (Lij + Lji) X2
Li; 2 , 4L;;
S () ity
T Ly 2 !

Carnot efficiency®S = 0

L;; = Lj; (Time-reversal symmetry) S=0-J;=0
L;; # Lj; (broken TRS) With proper X;, S = 0 formally

allow J; #+ 0 (Finite power is not excluded)
(G. Benenti, K. Saito, and G. Casati, PRL 106, 230602 (2011))



Constraint in mesoscopic transport

Unitarity of scattering matrix says
LiLij + LijLy; — Li; — L5 = 0

Thmax /M

Carnot efficiency is achievable

only when x = 1 (no magnetic
field)

10" (Prmax) /Mc

Efficiency at maximum power
may be larger than 1/2

K. Brandner, K. Saito, and U. Seifert, PRL 110, 070603 (2013).
V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).




EMP is indeed larger than 1/2

0.6
T
0.502
04F .
T n.ﬁﬂn i : = L ﬂ
Up £p - .
ﬁﬁ 0.498 ]
eE 0.2 \
2 043%00 1405 1.010 !
%
. 0.0 pro——oovooooo—omd 11 S
He Ty
| -10 5 5 10

X o

Direct numerical calculation of AB effect.

V. Balachandran, G. Beneti, and G. Casati, PRB 87, 165419 (2013).



Onsager matrix in cyclic process

K _.M : heat from hot bath/time

]W . extracted work/time
S 1 s

/7\"1‘;20 1501054 C ) F W = AH / TC
S = ] Q F Q T ] w K w

AH
We define Onsager matrix by
using them.

K. Brandner, K. Saito, and U. Seifert, PRX 5, 031019 (2015).



Inequality for relative entropy

D(px”%c) — sz ln_'l' dx — Px

. Z Co(px CIx)Z (cr = 9)
T L prtn R
2
We used a relation: aln=+ b — g > cola—b) )
b a+b
co(y—1)°

which is equivalenttoylny +1 -y =



] and o with detailed balance

zR PlR’P
0O — / n PW'

wzw'
R, .., P,
— ) Z,(RW’WPW — Ryw'Py)In RV‘;VW‘:VPWI
WEW
> 1 2(RW’WPW — Ry W’)z
-2 , R,,rwBy + Ry Pyt
WEW

co(R,, 1, Pw—R , 1 W,) )

R, 1., Pw +§ww’ P,

(cfio =Y, .0



Case with detailed balance

\

Detailed balance

Rywi
ww — e_.B(Ew_EWI)

\ RW’W

Remark: we do NOT take time reversal of w.

This is different from

Rywi
WW_ = B(Ew—Ewr)

R-I-W’*W*



Case of nonlinear Langevin equation

L1,1 :

Y

|
m

Cy() (0 1 02"
B v fmov?)

Desired relation is only R,,lj’,i = R'! (detailed-

—v'—v
balance: DB)

* Ify(v) = y(—v), DB is satisfied.

* For one-dimensional systems, DB is satisfied.

* For two or more dimensional systems, if
rotation does not change energy, we can apply
the above discussion to radial direction.




Application to many-body and multi-
bath systems with Hamilton dynamics

Total transition rate is decomposed into

Ry =R, + Z Z R
[Hamiltonian dynamlc::] Xlabel of particle]
[label ofm

-

O O
O O

_J(v-th bath] i-th particle




Hamilton and stochastic parts in
underdamped Langevin system

d
pr,v:LPx,v
L= va+i.(yvl 1dU+B><U>I y 9
0x O0v m dx fm 0v?
U
LO:=—va | a-<1dUIB><v)
dx Jdv \mdx




Properties of R? (L°) and RV (LY1)

d
L0 = —vp

dx

" ov

d 1dU
m dx

Iva)

* Effects of magnetic field, many-body interactions,

inertia is taken in R? (L°).
« RO (LO) conserves both energy and entropy.
> RO (L% is irrelevant to J and ¢!

y (o

Ll'l e 3

m (0v

1 62\

\

,Bm dv* )

» RV (LY') acts only on velocity v not position x.



Properties of R¥'* (L) in linear
Langevin systems

( 2
L1’1::y<a 1 a >

m (0v ,Bm dv*)

For linear Langevin systems, correspondmg

transition rate R , satisfies R , = R ~_, which
implies detailed balance

This reflect spatial _ < O O > 1

symmetry of noise!

\ JR
<O O— '



® in multi-particle case and
thermodynamic limit

| ‘ o
S\J(Z @)i) (Zai) (O OOHW_
Ny

All of J,0,0 := Y, ©; are proportional to volume V
>|J| < V0o is meaningful even in V — 0.



Upper bound of ©(1)

By putting |R,,,w| < Rpay, We have

1/(d
O < ( (AE?) + ZRmax(AE2)>
Co dt



Discretization of transition rate

We set

Then, in € — 0 limit, master equation becomes

d d (yp
—p —
TP =5 <m

y 0°

B 0p*

P(P)) + P(p)

which is Kramers equation.



Discretization of transition rate

We set

1
P(x,p)—>(x,p+e) = _F(x p)

1 14
€'m
Then, in €, ¢’ — 0 limit, master equation becomes

Pxp)>(eterp) =

d 0
tP(x p)_ P(X,p)—%F(X,p)P(X,p)

p
d mox

which is Liouville equation.



The inequality is tight in linear regime

In Ap < 1, Fourier law tells f + A[j
J=kAB " o=AB] =]%/k kﬁ ‘
(x : thermal conductivity)

Fluctuation-dissipation like relation (/*)., = 2k
says 0, = Kk

Inequality /? < 0,0 always becomes equality in
the linear regime.



Thermoelectricity

— —
T; i }TZ
Tl >T2,,Ll2 >,Ll1 b MLZ
Heat current J,, particle current J,, flow along 1 — 2

. . . : T: Auj
Efficiency is definedasn,-=1—-—=>n: = n
Y e =T Tt

(Ap == pup, —u; We assumed Jqg — UiJn > 0)



Inequality for heat and particle currents

In a similar manner, we have
2] < /040
2], <00

Here ©, takes ' or ©2, 0, is

9
O, = 3 Z ANV?// (Rw’WPW + RWW'PW’)

wxw'



Power-efficiency trade-off in
thermoelectricity

Using them, power and efficiency satisfy

®q T (ﬂl)zgn
2

ApJ, < B2n(mc —n)




Quantum case and non-Markovian case

* We can extend our result to quantum Markov
process by considering microscopic origin of
guantum Markov process.

* Trade-off inequality between speed and
efficiency for quantum non-Markovian system is
derived with completely different approach
(employing Lieb-Robinson bound and quantum
information geometry)

(N. Shiraishi and H. Tajima, PRE 96, 022138 (2017))



“trivial” achievement of Carnot
efficiency at finite power

[External force: F| E1 R = ke—ﬁH(AZEJrF)
O Bu(AE+F)
R(I)_Il — ke 2
By b BLAE
O R%O = ke 2
BLAE
EO R(l)‘l — ke 2

Taking F — ([[:—L — )AE and k — oo simultaneously,
H
both n = n. and finite power are trivially achieved.

But, this is physically meaningless!



What we indeed investigate in
“finite power and Carnot efficiency”?

A
[External force: F| E1 RE = ke_w
Pu(AE+F)

E?Jl(o)& R, = ke ﬁAzE
O Ry = ke™ 2

BLAE
EO R(l)'l - ke LZ

Taking F — (5—" — 1) AE and k — oo simultaneously,
H

both n = 1. and finite power are trivially achieved.

Transition coefficient k is inherent time-scale of
system which cannot be changed externally.

Our problem is whether finite power and CE coexist
with fixed time-scale parameter.






Speed limit: problem

Problem: Given Initial and final states (distributions).

How quick can we transform this state?

initial state

We can tune how to
change the control

pa rameters.
final state



Speed limit: known results

Quantum speed limit

Llpury) _
AE/h ~

(L. Mandelstam and I. Tamm, J. Phys. (USSR) 9, 249 (1945))

Mandelstam-Tamm relation:

Energy fluctuation bounds the speed of operation.
(Background: uncertainty relation)

What about classical systems?



Classical speed limits: some attempts

Some formal extensions to classical

Hamiltonian/stochastic systems

S. Deffner, New J. Phys. 19, 103018 (2017), B. Shanahan, A. Chenu, N. Margolus,

A. del Campo, Phys. Rev. Lett. 120, 070401 (2018), M. Okuyama and M. Ohzeki,
Phys. Rev. Lett. 120, 070402 (2018), S. Ito, arXiv:1712.04311.

Physical picture/meaning is highly unclear!

Overdamped Langevin systems

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Physical picture is clear. ~
But system is very specific!




Setting and goal of this part

System: general Markov process on discrete states
with detailed-balance condition.

Initial and final distributions (p and p’) are given.

What we want to obtain is...
L )2
(p,p") -
H A

established physical quantities

T



Main result

Lp,p") =2 |pw —py | : total variation distance
2. : total entropy production

(A): averaged dynamical activity fOT dtA(t)



What is dynamical activity?
Dynamical activity: How frequently jumps occur.

A = ) Ryrpu(®

w, W/

Activity determines time-scale of dynamics.

Activity cf) Current
+1 +1
= =
> =

Glassy dynamics: J. P. Garrahan, et al., PRL 98, 195702 (2007).
Nonequilibrium steady state: M. Baiesi, et al., PRL 103, 010602 (2009).



Physical meaning of our inequality

[Length between initial and final states]

/

L(p,p")? <.
25(A)

(Entropv production: Time-scale of dynamicsN
Cost of quick state (cf: Planck constant)
_ transformation y




Fro systems without detailed-
balance condition

Case with detailed-balance L(p,p")? <,
condition A

Case without detailed-balance coL(p, P')Z <
. <T
condition 2¥s(A)

2 ys: Hatano-Sasa entropy production

SS
W,)

p
SS

Pw
(T. Hatano and S.-i. Sasa, Phys. Rev. Lett. 86, 3463 (2001))

(Heat fQ,,_,,’ is replaced by excess heat In






Proof (technical part 1)

Normalization condition: » R =—Rj
)

dj qd;
9 Z Rijpj In (qu) — _Rjjpj In (ijq) e o o *




Proof (technical part 2)

Z Ri;ip;In (

Z;éj p] Qz

i#]

_—7_

( .
We just exchange the dummy
_indexes i and ]

i71q R;iq;
—ZRzgpglﬂ( : ”) +ZR¢jijj— -
' ij dj

normalization

. condition

~




Corresponding fluctuation theorem

This relation (variational expression) is not derived
from the conventional FT, but derived from a little
modified FT:

S R




