Introduction to stochastic
thermodynamics

Naoto Shiraishi (Gakushuin University)

Based on my textbook (Springer, in preparation)



Subject of stochastic thermodynamics

Conventional thermodynamics
Macroscopic systems. No fluctuation.

Stochastic thermodynamics
We can treat small systems with thermal fluctuation.
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State space of system
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(http://leading.lifesciencedb.jp/2-e009) (https://phys.org/news/2016-01-maxwell-demon-self-
contained-information-powered-refrigerator.html)

In this lecture, state space is discrete.
(For continuous systems, we take proper
discretization and continuum limit)


http://leading.lifesciencedb.jp/2-e009
https://phys.org/news/2016-01-maxwell-demon-self-contained-information-powered-refrigerator.html

Role of heat bath

Setup: System is attached to large heat bath(s).

[system l
-

heat bath

The heat bath induces the stochastic nature of
dynamics of the system.



Stochasticity from heat bath

Example: protein with three stable states
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Markov process
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Markov process!



State = Probability distribution

State of system = Probability distribution on
(microscopic) states.
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probability 0.3

P1 0.3
—>We describeitas p=|p2| = |05
D3 0.2



Stochastic transition in continuous time
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Stochastic transition in continuous time

0.1
Ap — pt + At) — p(t) = (0.3) (in this case)
At At 0.9

0 0.1At
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Transition matrix and master equation

Ap dp
Taking At = 0, v becomes — -

Master equation

g [P Ri1 Rip Ris D1
pril D2 Ro1 Ros Ros D2
p3 R31 R3o Ras p3

ex) In the previous slide, M
R12 — 01, R32 — 02, RZZ = —0.3 \



Conditions for transition matrix

q (P Ri1 Ris Ris P1
Z\P2| = Ro1 Roy Ros P2
P3 R31 R3x Rss P3
Transition matrix R should satisfy

1. Non-negativity
Ri; = 0 (i # j)
("."probability cannot be negative)

2. Normalization condition
2.i Rij = 0 foranyj.
(*."2;p; should be normalized to 1)




Before here, we provide
mathematical description of
stochastic Markov processes.

We now put physics into it.



Situation (re-show)
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For simplicity, we consider case of a single heat bath

for a while.



Equilibrium distribution is invariant

energy of states w M ™
E, E, E,

Then, equilibrium (Gibbs / canonical) distribution
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0
should be invariant: —p“ = Rp® = (O)
0




Equilibrium distribution is invariant

Invariant condition
p’ does not change in time.

ZiRijpf = 0 foranyj

All physical systems satisfy this condition.
Moreover, various systems \ //
satisfy a stronger condition! M




Detailed-balance condition

Detailed-balance condition
In equilibrium, no probability current between any
two states.

R;pj = R;ip{
/

No probability current
between states 1 and 2.



Tentative summary
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Definition of internal energy

energy of states m M ™
E, E, E,

Internal energy = Average of energy

E = (E) =ZEmi




Definition of heat

state 1 m state 2
4 Y )
heat bath F‘ _
! ’ . !Energy Eq EZJ
lis emitted

Heat = Energy emission due to transition

Heat rate: Q := Y, /(E; — E;)R;p;
— _Zi,j EiRijpj (We used ZiRij — O)



QO

state 1
P1

Definition of work

oy

state 2
P2

‘H AE,

QO

This process requires average energy p,AE,.

Work = Energy change due to change of state energy

‘dt



First law of thermodynamics

Employing these definitions, the first law of
thermodynamics (energy conservation) is satisfied:

E=Ww-0

Derivation:

L= = Y e
YISV




Entropy

)

heat bath

. J

System + bath is isolated!

We want to define Sgystem and Spqepn such that
ASsystem + ASparn is always nonnegative (law of
entropy increase).



Entropy in conventional
thermodynamics

In conventional thermodynamics, entropy is

e defined for equilibrium states.

* given by dS = BdQ (Clausius relation).

Entropy of bath: Sy 4:, == BQ indeed works. )

How to define entropy of system? { heat bath J




We introduce entropy
in information theory!



Example: weather

Sunny days: very usual
— Little surprise

Snowy days: very rare
—>Big surprise!




Quantizing degree of surprise

Axiom of surprisal

 Non-negative continuous function (w.r.t.

probability of event)
 If Aand B are independent events with each

other, then surprisal for “A and B” is sum of
surprisal for A and that for B.

Then, surprisal is uniquely determined as —C - Inp
(C: constant, p: probability for event)



Shannon entropy

[big surprise —Inp

No surprise]

0 1 probability p

Average of surprisal: H(p) = — ),; p; Inp;
—>This is Shannon entropy!



Properties of Shannon entropy

Events occur very randomly (high stochasticity).
—> Degree of surprise is large.
— Shannon entropy is large.

Events occur almost deterministically.
— Degree of surprise is small.
— Shannon entropy is small.



Example of Shannon entropy

Surprisal
X
:J..' Sunny 70% 0.357
Cloudy 29% 1.238
Snowy 1% 4.605

H(p) = 0.250 + 0.359 + 0.046 = 0.655



Example of Shannon entropy (2)
head/tail of coin

Plotof H(p) = —plnp — (1 —p) In(1 — p)

p: prob. of head -

H(p) ..
In 2

( ° °
biased coin

a |Wa S ta i I i a1 0.2 a3 0.4 Q5 0. Q7 oA 04 1
(always tail) | fair cﬁ P




Shannon entropy and Boltzmann
entropy in statistical mechanics

In equilibrium (Gibbs) distribution, Shannon entropy
coincides with Boltzmann entropy.

Ex) Microcanonical ensemble

Di = % (Q2: number of states).

H(p) = —Q-%ln%= InQ=5§5 (Wesetkg =1)

Ex) Canonical ensemble
e_BEi e_ﬁEi

pi=——H({p)=—-X;piln——=B(E) - PF =S




Shannon entropy as entropy of
stochastic system

Shannon entropy = A kind of generalization of
equilibrium entropy.

We define entropy of fluctuating system by its
Shannon entropy.

(As seen later, this definition indeed reproduces
thermodynamics if system is attached to baths.)

Information entropy always appears in stochastic
thermodynamics (not only in Maxwell’s demon).



Entropy production

/ ASsystem — H(pfin) o H(pini)
WV

\ heat bath ’ “~ASy e = B0

Entropy production (total entropy increase)

0 = ASsystem + ASpatn



Entropy production rate

Entropy production rate: (| dtd = o)

0 = Ssystem + Shath

zp In p; EﬁE il
T dt LR L dt

= — z RijpjInp; — Z EiRi;pj
M i’j

api _
[master equation: —* = 3’ Rijpj]




Entropy production rate in systems
with detailed-balance

If system satisfies detailed-balance condition,

R.. D
& = ZRi,.p,. In 221
LJ

R;;p;

- Rij
." Using lnR—j’i = ,B(Ej — El-) and ); R;; = 0, we have

z R;ip;[B(E; —E;) +Inp; —Inp;] = z Rijpj|-BE; —Inp;] =0
i,j L,j



Second law of thermodynamics

Theorem: Second law in stochastic thermodynamics

For any systems, we have
c=>0

(which directly implies o0 = 0)

In conventional thermodynamics, second law is an
empirical law (axiom).
In stochastic thermodynamics, second law is a

proved theorem.
(Remark: This is not derivation of second law of thermodynamics,
since our definition employs results in thermodynamics; S, 45, = Q)



Proof (case with detailed balance)

We use relation (a — b) ln% >0

(7. ln% > (Qifand onlyif (a — b) = 0)

R.:1.
G = Z Rijp; In—22
L,J

Rjip;
Rijp;

1
> ;j ( ijPj ]lpl) n Rjipi

>0



Before going to the proof for general
cases, we introduce Kullback-Leibler
divergence (relative entropy).



Kullback-Leibler divergence

Kullback-Leibler divergence (Relative entropy)
For two distribution a;, b; satisfying ).; a; = >.; b;,

a;
D(al|b) = E a;In—
b;

1

KL-divergence is a kind of (pseudo)-distance
between two distributions.

Theorem:

D(al||lb) = 0



Proof of D(al|b) = 0

Weusex—1=>Inx
y=Inx

b; b;
D(a||b) = —zailn—z —zai 2
. a; . a;

l l

=— ) (bi—a) =0

l



Dual transition matrix

We define dual matrix as
—BE:
ié L R]-ie PE;
ij = o—BE;

Dual matrix is transition matrix (i.e., satisfying
normalization condition) because

R, _ ZiRye 0
e ﬁE’/\

| Invariance of canonical distribution |




General expression of
entropy production rate

o= —z RijpjInp; — z EiRijp;
i,j L,J

i L]

i#j L#]

Riip; h

— Rl]p] ln ~ RU —
Ziij R;ip; lan—ji = B(Ej — Ey)
J




Entropy production is nonnegative!

l#—']

zRupJ % Z_Rllpl z jiPi
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. . L. . h
Changing dummy index j — i and using
B R;;e~FEi -
ii — _ — R
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Summary

e We construct the framework of stochastic
thermodynamics.

 Heat, work, and entropy production is
defined.

* Nonnegativity of entropy production (the
second law of thermodynamics) o = 0 is

proved. D






Remark: time derivative of
Shannon entropy

dp
zpllnpl — z<dtl)lnpl zpl_(lnpl
_J

d
zpl p_lapl] Z%pi =0
i

Only the first term remains to be nonzero.




Shannon entropy does not work in
iIsolated system

Shannon entropy is invariant under Hamiltonian
dynamics (Shannon entropy does not increase).

Shannon entropy is NOT good characterization of
entropy of isolated systems.



Why Shannon entropy does not

work in isolated systems?

Restriction of operation is inevitable for
thermodynamic irreversibility

Isothermal system

[—Eﬂ\ — Any operation is possible.
heat bath — We cannot operate bath.

Isolated system

[ ]<— Only macroscopic operation is
possible.




Case of multiple baths

_ pl 2
heat bath 2 Rij = Rij T Rij

Invariant condition

heat bath 1

Zj Rizje_'BZEj =

Detailed-balance condition
1 ,—-BYE; _ p1_,-BLE;
Rije b ] = le-e P E;

2 —B%E; _ p2_,—B?%E;
Rije J —le-e PE;



