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Outline

» Bet-hedging in jellyfish  with N. Azafia, P. Mariani (DTU, Copenhagen)

* Bet-hedging waves  with P.V. Martin (OIST), M.A. Mufioz (U. Granada)
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Bet-hedging

In gambling:

A New Interpretation of Information Rate

reproduced with permission of AT&T

By J. L. KELLY, JR.

(Manuscript received March 21, 1956)

- Diversify investment strategy when playing an uncertain game
- Theory of bet-hedging is related with information theory
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Betting on a biased coin

g: fraction of capital bet on head

p: probability of head >1/2

$(t): capital at round t

nH, nT: number of head and tails until t
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Betting on a biased coin

g: fraction of capital bet on head

p: probability of head >1/2

$(t): capital at round t

nH, nT: number of head and tails until t

5(0)(T+¢)" (1 =)™
~ $(0)6t[p In(14+q)+(1—p) In(1—q)]

Maximized for q =2p—1

-> maximum average growthrate  In2+plnp+ (1 —p)In(1 — p)
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Bet-hedging in biology
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Life cycle of scyphozoan jellyfish
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Asexual life cycle of jellyfish

1.Polyps
2.Cysts

3.Planuloids

N. Azana, SP, P. Mariani, American Naturalist (2018)
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1. Beginning of the season

In each patch:
Wild type (w), mutant (m)

Fraction of polyps: IV, N,
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2. Reproduction
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3. Competition
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4. Extinction
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5. Repeat
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Different strategies => competitive exclusion
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Evolution

Each round: WT vs. mutant, if mutant wins becomes new WT
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Evolutionary stable strategy
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Evolutionary stable strategy
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Spatially correlated extinctions
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fp

e

r = average range of extinction events

N. Azana, SP, P. Mariani, American Naturalist (2018)
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Conclusions

» Coexistence of multiple asexual strategies is possible

* No species employ only local budding in the wild (but they do
in the lab in food-rich conditions)

* More common and generalist species typically employ all
three modes

« Cyst allocation increases in response to starvation/predation
 Tradeoff between cysts and motile buds depends on level of

environmental risk and spatial correlations -> “Escape in
space vs time”

> N N XX
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Range expansion
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Neutral competition

growth of a colony of two neutral
E.Coli strains

Hallatscheck and Nelson (2007)
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Logistic growth

d

—C = ac — b62 - exponential growth at small density
dt - saturation at higher density (finite resources)

interpretation: growth of a population
OR spread in a population of an advantageous mutation

750
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Tima (howrs)

J%j/\ from J. Maynard Smith, “Evolutionary Genetics”, 1998
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Fisher equation

Orc = DO*c + sc(1 — ¢)

Spread of a population (or advantageous mutation) in space

Fisher (1937)
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Fisher equation

Orc = DO*c + sc(1 — ¢)

Spread of a population (or advantageous mutation) in space

20

Basic result: propagating front of velocity

v=2VDs

OIST

Fisher (1937)
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Individual-based models and stochasticity

reproduction/
competition

diffusion

72\

continuum limit: stochastic Fisher equation

Orc(z,t) = DV?c + sc(1 — ¢) + /2uc(l — ¢) INE(z, t)

c(x,t) = fraction of one of the two species

= reproduction rate
s = selective advantage
N = local population size
D = diffusion constant

where:

Kimura et al (1964)
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Two different fixation mechanisms

continuum limit: stochastic Fisher equation

Orc(x,t) = DV2c 4+ sc(l — ¢) + \/2uc(l — ¢)/NE&(x, t)
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Bet-hedging in expanding populations

Ouf(x,t) = DVf +o(x,t) f(1 - f)
O‘(.Cl?,t) — Oj(x,t) — Z Sij O with . a; =1

TN\

Environmental states Frequencies of strategies

P. Villa-Martin, M.A. Munoz, SP, Plos Comp. Biol (2019)
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Well-mixed limit

For long times: f(t) ~ €t<g>f(0)

* “Fitness” is a linear function of the frequencies
* Optimal strategy is a pure strategy
» Bet-hedging is never advantageous
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Simpler case Temporal environmental variations, or

Y

Oif(x,t) = DV2f +o(x,t) f(1— f)
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Temporal fluctuations
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Spatial fluctuations
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* The wave front spends less time in the
advantageous environment

« Bet-hedging region is broader than for
temporal fluctuations
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General case

Ocf(z,t) = DV*f +o(z,t) f(1 - f)
o(z,t) = Oi(z,t) — Z Sij O
J
with ¢=1...M, g=1...N andarbitary M,N,s;; >0
* Frequent environmental change rate: no bet-hedging

» Slow environmental change rate: bet-hedging is favored for
spatial fluctuations
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Role of finite population size

Stochastic Fisher equation:
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Slightly reduced velocity, otherwise similar physics
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Conclusions

Bet-hedging is:

 favored in range expansions compared to well-mixed populations
 favored at low rather than high frequency of environmental change
« favored for spatially rather than temporally varying environments

* not much dependent on demographic stochasticity

Lots of possible generalization: finite switching rates, pushed waves etc.

P. Villa-Martin, M.A. Munoz, SP, Plos Comp. Biol (2019)
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