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Bet-hedging

In gambling:

- Diversify investment strategy when playing an uncertain game 
- Theory of bet-hedging is related with information theory



4

Betting on a biased coin

q: fraction of capital bet on head 
p: probability of head >1/2 
$(t): capital at round t 
nH, nT: number of head and tails until t
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Betting on a biased coin

q: fraction of capital bet on head 
p: probability of head >1/2 
$(t): capital at round t 
nH, nT: number of head and tails until t

$(t) = $(0)(1 + q)nH (1� q)nT

⇡ $(0)et[p ln(1+q)+(1�p) ln(1�q)]

Maximized for 

-> maximum average growth rate 

q = 2p� 1

ln 2 + p ln p+ (1� p) ln(1� p)
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Bet-hedging in biology

fluctuations experienced by a population over
long periods can select among different genetic
mechanisms for generating diversity. Orga-
nisms whose stochastic switching rates are
better adjusted to environmental fluctuations
can outgrow organisms that use a different set
of switching parameters.

Finally, how does information gathered
by organisms about the fluctuating environ-
ment affect their survival? The two types of
switching differ markedly in this regard. For
responsive switching, information about en-
vironmental changes is conveyed to the
organism directly through the sensing mecha-
nism; whereas for stochastic switching, it is
conveyed indirectly by natural selection.

We consider a simple model that en-
compasses both responsive and stochastic
switching and describes a clonal population

growing in an environment that fluctuates in
time among a finite number (n) of different
environment types (Fig. 1). The fluctuating
environment is a continuous-time stochastic
process, E(t), designating which environment
occurs at time t; the average duration of
environment i is ti (with the average over all
environments equal to t); the occurrence
probability of environment i is pi; and the
probability that environment i follows j is bij
(bii 0 0).

Each individual organism is capable of
exhibiting one of n different phenotypes.
Phenotype i grows with rate fi

(k) in environ-
ment k (growth rates may be positive or
negative). The phenotype with largest growth
rate in environment k is phenotype k (its
growth rate is fk

(k)), and we refer to it as the
fastest-growing phenotype and to all other

phenotypes as slower phenotypes. Individuals
may switch phenotype at any time, with
parameters Hij

(k) giving the switching rate from
phenotype j to phenotype i in environment k.

Taking the simplest model of growth, the
n-dimensional population vector, x(t), whose
ith coordinate is the number of individuals
with phenotype i at time t, obeys the following
equation

d

dt
xðtÞ 0 AE ðtÞxðtÞ

The matrix AE (t) may be one of n different
matrices, depending on the environment,
E (t). Ak can be written as a sum of a diagonal
matrix, whose diagonal entries are the
growth rates of each phenotype in environ-
ment k ( fi

(k)), and the matrix of switching
rates, Hij

(k) (Fig. 1). The sum of all the entries
of x(t) gives the total population size N(t) (19).

The two types of phenotype switching
correspond to different choices of switching
rates. For stochastic switching, these rates are
independent of the environment k; therefore,
for all values k

H
ðkÞ
ij 0 Hij ðstochastic switchingÞ

For responsive switching, the sensing mecha-
nism allows switching rates to depend strongly
on k. In the extreme case, all phenotypes
switch with the same rate Hm to phenotype k in
environment k, so

H
ðkÞ
k j 0 Hm for all j m k ðresponsive switchingÞ

H
ðkÞ
ij 0 0 for all i m k and j m i

The switching rate Hm is physiologically
determined but ideally as large as possible, so
that individuals spend as little time as possible
in slower phenotypes.

To compare the two types of switching,
we calculate the so-called Lyapunov exponent
L (20), which is the asymptotic growth rate of
total population size (21, 22) given by the
large time limit of (1/t) log N(t). L is known to
exist under relatively general conditions (20)
and depends on both the organism (growth
rates of its phenotypes and switching rates) and
on the temporal sequence of the changing
environment E(t). In general, it is difficult to
compute analytically, but we now describe an
approximation that allows such computation
for our model.

We assume that environmental durations
are long enough that the population has time to
reach its equilibrium composition before the
environment changes. In environment j, this
means that x(t) will eventually point essentially
in the direction of the top eigenvector of the
matrix Aj. Upon a change of environment from
j to i, there will be a delay time, Tij

*, during
which the population_s composition changes

Fig. 1. A population is composed of individuals each capable of exhibiting one of n different phenotypes in
n different environments. The growth rate of phenotype i in environment k is fi

(k); among all phenotypes
in environment k, phenotype k grows the fastest. Individuals can switch phenotype at any time,
responsively or stochastically. Hij

(k) is the switching rate from phenotype j to i in environment k, and

HðkÞ
jj 0

P
imj

HðkÞ
i j . The boxed growth equation governs the dynamics of the n-dimensional population vector

of phenotypes, x(t). The changing environment is a continuous-time stochastic process, E(t), taking integer
values 1 to n designating the environment at time t. The form of matrices Ak is shown, determining the
combined growth and switching rates of all phenotypes when E(t) 0 k. E (t) is assumed to be constant
on successive time intervals Tl with l 0 1, 2, I; e(l) is the environment occurring at the lth interval,
and L(t) denotes the number of intervals Tl elapsed by time t. Environment change probabilities are bij K
P[e(l) 0 i k e(l – 1) 0 j], so e(l) is a Markov chain (assumed ergodic) with n states and transition matrix b,
with bii 0 0. The equilibrium probability pi of environment i satisfies pi 0

P
j
pjbij ; the average duration

of environment i is ti and the average duration of environments is t K
Pn

i01
piti . Total population size is

NðtÞ K
Pn

i01
xiðtÞ. A schematic of the dynamics is shown in which individuals are colored to indicate

phenotype, such that the fastest-growing phenotype in each environment matches the environment’s
color. When environment j changes to i, there is a delay time, Tij

*, in which x(t) rotates (shown in gray)
before the population attains its new composition. In responsive switching, individuals switch directly
to the fastest-growing phenotype. In stochastic switching, subpopulations exist in different
phenotypes; when the environment changes, the fastest-growing subpopulation brings about a
change in population composition. Proportions of slower-growing phenotypes are exaggerated for
the purpose of illustration; they may be as small as ,10–6.
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Figure 2. A bloom of Moon jellyfish (Aurelia aurita) outside Århus harbour in Denmark. 
 

For example, in the case of the Black Sea, where a decade-long population explosion 

of the invasive ctenophore Mnemiopsis coincided with a collapse in small pelagic anchovy, 

the question of causality, and especially whether the increase in Mnemiopsis populations 

was a cause or effect of the collapse, has been a subject of intense debate (Oguz et al. 

2001; Daskalov 2002; Daskalov et al. 2007; Oguz & Gilbert 2007; Daskalov 2009; Llope 

et al. 2011). However it is clear that many human impacts that are harmful to fish stocks, 

such as fishing, eutrophication and oxygen depletion have less severe, neutral or even 

beneficial effects on jellyfish populations (Purcell 2012). The subject is further 

complicated by the fact that jellyfish are also often opportunistic predators of the early 

life stages of fish (Purcell & Arai 2001). Whereas jellyfish was previously thought to be 

a trophic ‘dead end’, except for a few specialized predators such as the sun fish Mola 

mola and leatherback turtle Dermochelys coriacea (see e.g. Lynam et al. 2006), recently 

it has been recognized that jellyfish are also routinely and opportunistically consumed 

by a large variety of fish species (Arai 2005; Cardona et al. 2012; Milisenda et al. 2014), 

although their pulsed occurrence and few specialized predators mean that they are 

probably rarely controlled by predation. 

  



8

Life cycle of scyphozoan jellyfish

7 
 

 
Figure 3. Illustration showing the typical life cycles of jellyfish. A) The metagenic life cycle of a typical 
scyphozoan jellyfish (here represented by Aurelia sp). The adult female jellyfish produces a planula 
larvae after being fertilized with sperm from a male, which settles as a polyp. The polyp can reproduce 
asexually, producing more polyps, but can also form a strobila to produce several larval jellyfish 
(ephyrae). The ephyrae grows and matures into an adult, restarting the cycle. B) The holoplanktonic 
life cycle of a lobate ctenophore. The adult jellyfish is hermaphroditic, and capable of self-fertilization. 
The resulting egg hatches into a larva, which can itself start to reproduce before reaching adulthood. 
 
1.1.4 Jellyfish interactions with humans 
Jellyfish provide several ecosystem services to humans (reviewed in Graham et al. 2014). 
First and foremost, jellyfish are a traditional source of food in East Asia, and support 
large fisheries there and in the Gulf of Mexico (Hsieh et al. 2001). Additionally, jellyfish 
can also locally be an important carbon sink, contributing to the global biological carbon 
pump (Sweetman & Chapman 2015). Recently, jellyfish have also become an attraction 
at public aquaria, and wild populations have also become a tourist attraction in certain 
areas of the world (Graham et al. 2014). Certain companies even offer lighted aqua with 
live jellyfish as ‘jellyfish art’ for indoor decoration (https://www.jellyfishart.com/). 
Finally, jellyfish are also a source of new compounds in medical research (Graham et al. 
2014). 

However, the negative consequences of jellyfish on human activities significantly 
outweighs the benefits as jellyfish populations increase (Graham et al. 2014). As 
previously stated, jellyfish may compete with more valuable forage fish species for 
resources, reducing the fish stocks available for fishing or for valuable higher trophic level 
predators. However, jellyfish also have more direct impacts on human activities (Graham 
et al. 2014). Interfering directly with fisheries, jellyfish can clog fishing nets, destroying 
the catch or nets and resulting in lost revenue or even fisheries closures. Jellyfish can also 
cause mortality in aquaculture and obstruct important human infrastructures like the 
water intakes of power plants. Finally, jellyfish can be detrimental for tourism, because 
of the risk of injury or death from jellyfish stings, and the resulting beach closures. Costs 
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end, we introduce a simple evolutionary model, analyzing the emergence of evolutionary stable 

strategies in the trait space of allocation among the strategies of dispersal, dormancy and rapid 

local reproduction in a density-dependent metapopulation, evolving on a spatial lattice. We 

investigate whether a single optimal strategy exists for a given set of conditions, and under 

which conditions we can expect a mix of the three reproductive modes. We conclude by 

contrasting our results with the literature on scyphozoan polyp reproduction, and propose 

further experiments on the evolution of reproduction in scyphozoan polyps. 

  

Figure 1. Reproductive strategy and model structure. Top Panel: Asexual reproductive modes in scyphozoan 

polyps: 1) The budding off of local buds, which are more or less fully developed before detachment. 2) The 

production of cysts, which are dormant until they hatch into a new polyp at a later time (months-years). 3) The 

production of motile buds of various types, which go through a dispersing phase before attachment and 

development. Bottom Panel:  Illustration of the model structure in a single patch, where N and C are the 

numbers of polyps and cysts, respectively, at the start of the time step, f denotes the fraction of reproductive 

effort allocated to a given mode, r is the relative fitness of a given reproductive mode, and hC is the hatching 

rate of cysts.  is the number of cysts 

  4

Asexual life cycle of jellyfish

1.Polyps 

2.Cysts 

3.Planuloids

N. Azaña, SP, P. Mariani, American Naturalist (2018)
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Model
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3. Competition

end, we introduce a simple evolutionary model, analyzing the emergence of evolutionary stable 

strategies in the trait space of allocation among the strategies of dispersal, dormancy and rapid 

local reproduction in a density-dependent metapopulation, evolving on a spatial lattice. We 

investigate whether a single optimal strategy exists for a given set of conditions, and under 

which conditions we can expect a mix of the three reproductive modes. We conclude by 

contrasting our results with the literature on scyphozoan polyp reproduction, and propose 

further experiments on the evolution of reproduction in scyphozoan polyps. 
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production of cysts, which are dormant until they hatch into a new polyp at a later time (months-years). 3) The 

production of motile buds of various types, which go through a dispersing phase before attachment and 

development. Bottom Panel:  Illustration of the model structure in a single patch, where N and C are the 

numbers of polyps and cysts, respectively, at the start of the time step, f denotes the fraction of reproductive 

effort allocated to a given mode, r is the relative fitness of a given reproductive mode, and hC is the hatching 

rate of cysts.  is the number of cysts 
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4. Extinction

end, we introduce a simple evolutionary model, analyzing the emergence of evolutionary stable 

strategies in the trait space of allocation among the strategies of dispersal, dormancy and rapid 

local reproduction in a density-dependent metapopulation, evolving on a spatial lattice. We 

investigate whether a single optimal strategy exists for a given set of conditions, and under 

which conditions we can expect a mix of the three reproductive modes. We conclude by 

contrasting our results with the literature on scyphozoan polyp reproduction, and propose 

further experiments on the evolution of reproduction in scyphozoan polyps. 
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production of cysts, which are dormant until they hatch into a new polyp at a later time (months-years). 3) The 

production of motile buds of various types, which go through a dispersing phase before attachment and 

development. Bottom Panel:  Illustration of the model structure in a single patch, where N and C are the 

numbers of polyps and cysts, respectively, at the start of the time step, f denotes the fraction of reproductive 

effort allocated to a given mode, r is the relative fitness of a given reproductive mode, and hC is the hatching 

rate of cysts.  is the number of cysts 
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5. Repeat

end, we introduce a simple evolutionary model, analyzing the emergence of evolutionary stable 
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local reproduction in a density-dependent metapopulation, evolving on a spatial lattice. We 

investigate whether a single optimal strategy exists for a given set of conditions, and under 

which conditions we can expect a mix of the three reproductive modes. We conclude by 

contrasting our results with the literature on scyphozoan polyp reproduction, and propose 
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Different strategies        competitive exclusion

medusae will affect our results quantitatively but not qualitatively, and at this stage including 

them in the model would complicate the interpretation of the predictions about polyps without 

adding significant ecological insight. We note that while medusae cannot reproduce without 

going through the polyp stage, polyps can reproduce without undergoing the medusa stage and 

can therefore be considered as independent to some extent. Additionally, from the polyp 

perspective, the main relevance of the medusa stage is to maintain the quality of the gene pool 

via sexual reproduction, an aspect that is out of the scope of our study but is partially 

incorporated in the mutation rate of the evolutionary model.  

  

Figure 2. Evolution of strategies in the model. a) Competition between a wild type (w, grey) and a mutant (m, 

black) polyp, leading to competitive exclusion of the wildtype by the mutant. b) Evolution of allocation to the 

three reproductive modes through generations of mutation and selection. After ca. 290 generations, the system 

has reached an evolutionarily stable strategy (ESS). c) Convergent evolution to a common ESS of populations 

starting with different initial allocation values. For all simulations, parameters are L = 50, rM and rC = 0.25, 

and e = 0.5. fM, fC and fB are the fractions of reproductive resources allocated to motile buds, cysts and local 

budding, respectively.  

  9
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“rounds”

Each round: WT vs. mutant, if mutant wins becomes new WT
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Evolutionary stable strategy
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Figure 3. A) Evolutionary Stable Strategy (ESS), for different parameter choices of relative fitness of motile 

buds and cysts (rM and rC, respectively), and extinction risk e. Lines show the location of the ESS along the 

gradient of e (shading), for different sets of rM and rC, the sum of which is kept constant at a value of rM + rC = 

0.5. B) As in A, but for different values of spatial correlation length r. All four lines are with rM = 0.25 and rC = 

0.25. As spatial correlation increase (increasing r), the ESS moves towards increased allocation to cysts, as 

shown by the arrows, which are between points with equal extinction risk. 

Results 

Simulations of the competition model always tend to a state where one of the two genotypes, 

depending on parameter choices, outcompetes the other (figure 2a). The difference between 

growth rates of the two genotypes also influenced the number of generations needed to reach 

monodominance. 

Letting the wild type evolve according to the evolutionary model, we observed convergence to 

an ESS characterized by distinct allocations to the three strategies fB, fM and fC (figure 2b). 

Importantly, given a fixed extinction risk e and relative fitness rM and rC, the evolutionary model 

always converged to the same strategy, independently from the initial distribution of wild and 
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Evolutionary stable strategy
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Spatially correlated extinctions
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always converged to the same strategy, independently from the initial distribution of wild and 
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r = average range of extinction events

Supplementary Information – spatially correlated extinction risk 
 
In this Supplementary Information, we investigate the effect of spatially correlated extinction events. To this 
aim, we introduce a variant of the model, differing in the way in which patches are selected for extinction.  
The procedure we implement is the following. At each time step, 
 

1. We assign a random number from the uniform distribution between zero and one to each patch. 
 

2. We then reassign to each patch the average of the random numbers drawn in a square of length r 
centered on the patch itself. 

 
3. The 𝑒𝐿2 patches with the highest average values undergo extinction events. 

  
With this prescription, increasing the value of r increases the correlation length of extinction events, without 
changing the number of patches that go extinct which is still set by the parameter e (see figure SI1). 

 
Figure SI1. Spatial patterns of extinctions (blue areas) with increasing r. All panels are with lattice size L = 50, and e = 0.25. 

 

N. Azaña, SP, P. Mariani, American Naturalist (2018)
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Conclusions

• Coexistence of multiple asexual strategies is possible  

• No species employ only local budding in the wild (but they do 
in the lab in food-rich conditions) 

• More common and generalist species typically employ all 
three modes 

• Cyst allocation increases in response to starvation/predation 

• Tradeoff between cysts and motile buds depends on level of 
environmental risk and spatial correlations -> “Escape in 
space vs time”  

?
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Range expansion

López et al. 2015
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Neutral competition

Hallatscheck and Nelson (2007) 

growth of a colony of two neutral 
E.Coli strains

B
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Logistic growth

d

dt
c = ac� bc2 - exponential growth at small density 

- saturation at higher density (finite resources)

Page 18

Figure 2.2
A comparison of the growth of yeast in a culture with logistic growth (from Allee et al.  1949).

It is now easy to see that, if K1 and K2 are different, one kind will eliminate the other. Thus suppose that
K1 > K2. Then x will increase until x + y = K1. At this point, x + y > K2, and hence dy/dt is negative. Thus
y will decrease: in fact, y decreases to zero, so that x selectively eliminates y.

The essential point, then, is that natural selection will cause the replacement of one type by another if,
and only if, the two are competing for resources, or, more generally, are limited by the same factors. In
ecological terms, they must be controlled by the same negative density-dependent factors. In the in vitro
experiments, this is certainly the case: all RNA molecules are competing for the same replicase enzymes,
and the same nucleotides.

There is one feature of the conclusion from Equation 2.7 that is misleading. Since x wins if K1 > K2, and
y wins if K2 > K1, it might seem that only a difference in carrying capacity, K, and not in intrinsic rate of
increase, r, could lead to selective replacement: in ecological language, it suggests that only traits that
affect resistance to density-dependent factors are subject to natural selection. This is an unfortunate
feature of the logistic equation: it is shown in Box 2.1 that selective replacement occurs between forms
that differ only in intrinsic rate of increase.

In comparing Equations 2.6 and 2.7, we compared a model in which the two types had no limiting factor
in common, and one in which the limiting factors were

from J. Maynard Smith, “Evolutionary Genetics”, 1998 

interpretation: growth of a population  
OR spread in a population of an advantageous mutation 
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Spread of a population (or advantageous mutation) in space

@tc = D@2
xc + sc(1� c)

Fisher (1937) 

Fisher equation
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@tc = D@2
xc + sc(1� c)

Basic result: propagating front of velocity

Fisher equation

Spread of a population (or advantageous mutation) in space

Fisher (1937) 

v = 2
p
Ds
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Individual-based models and stochasticity

x

c(x,t) = fraction of one of the two species 
   = reproduction rate 
s = selective advantage 
N = local population size 
D = diffusion constant

where:

Kimura et al (1964)

diffusion

reproduction/
competition

µ

continuum limit: stochastic Fisher equation

@tc(x, t) = Dr2c+ sc(1� c) +
p
2µc(1� c)/N⇠(x, t)
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Fisher wave, speed   

Two different fixation mechanisms

Stochastic fixationv = 2
p
Ds

continuum limit: stochastic Fisher equation

s � 1/N s ⌧ 1/N

@tc(x, t) = Dr2c+ sc(1� c) +
p
2µc(1� c)/N⇠(x, t)
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Bet-hedging in expanding populations

@tf(x, t) = Dr2f + �(x, t) f(1� f)

Environmental states Frequencies of strategies

�(x, t) = �i(x,t) =
X

j

sij↵j with
X

j

↵j = 1

P. Villa-Martín, M.A. Muñoz, SP, Plos Comp. Biol (2019)



30

Well-mixed limit

d

dt
f = �(t)f f(t) ⇠ eth�if(0)

�i =
X

j

sij↵j • “Fitness” is a linear function of the frequencies 
• Optimal strategy is a pure strategy 
• Bet-hedging is never advantageous

For long times:
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Simpler case

@tf(x, t) = Dr2f + �(x, t) f(1� f)

�i =
X

j

sij↵j

Temporal environmental variations, or

spatial environmental variations
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Temporal fluctuations

hvik!1 = 2
p
Dh�(↵)i

hvik!0 =
D
2
p

D�(↵)
E
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Spatial fluctuations

hvikM!1 = 2
p

Dh�(↵)i

1

hvikM!0
=

*
1

2
p

D�(↵)

+
• The wave front spends less time in the 

advantageous environment 
• Bet-hedging region is broader than for 

temporal fluctuations
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General case

@tf(x, t) = Dr2f + �(x, t) f(1� f)

�(x, t) = �i(x,t) =
X

j

sij↵j

• Frequent environmental change rate: no bet-hedging  
• Slow environmental change rate: bet-hedging is favored for 

spatial fluctuations

with and arbitraryi = 1 . . .M j = 1 . . . N, M,N, sij > 0
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Role of finite population size

@tf(x, t) = Dr2f + �(t)f(1� f) +

r
2

N
f(1� f)⇠(x, t)

Stochastic Fisher equation:

Slightly reduced velocity, otherwise similar physics



36

Conclusions

Bet-hedging is:

• favored in range expansions compared to well-mixed populations 

• favored at low rather than high frequency of environmental change 

• favored for spatially rather than temporally varying environments 

• not much dependent on demographic stochasticity

Lots of possible generalization: finite switching rates, pushed waves etc.

P. Villa-Martín, M.A. Muñoz, SP, Plos Comp. Biol (2019)


