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Overview

• Stochastic competition 
• Biodiversity and neutral theory 
• Spatial competition and scaling phenomena

• Bet-hedging in jellyfish 
• Population waves 
• Bet-hedging in expanding populations

Tutorial (morning):

Seminar (afternoon):

Tutorial: SP et al. JSP 2018  
Seminar: Azaña et al. Am. Nat (2018), Villa-Martin et al. Plos. Comp. Biol. (2019) 



3

Neutral competition

Hallatscheck and Nelson (2007) 

growth of a colony of two neutral 
E.Coli strains
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S. Hubbell (2001)
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A simple neutral model 

• Birth rate b 
• Death rate d 
• Extinct species are reintroduced at a small rate

d

dt
pn(t) = b(n� 1)pn�1(t) + d(n+ 1)pn�1(t)� (bn+ dn)pn(t)

Master equation:

pn /

n�1Q
j=1

b j

nQ
j=1

d j
=

(b/d)n

n
b(n� 1)pn�1 = dnpn

At equilibrium:
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S. Hubbell (2001)

pn / (b/d)n

n
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property population 
genetics

community 
ecology

unit gene individual

diversity alleles species

source of 
diversity

mutation speciation

Neutrality as a working hypothesis 
for biodiversity 

Classical case study: tropical 
forests. Recently applied to 

plankton and bacterial communities

Hubbell (2001), Alonso et al. (2006) 

Mainland: master equation describing
birth, death, speciation 

(multitype Wright-Fisher model)

Island: birth, death, coupling with mainland via 
immigration/emigration

Neutral theory
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property population 
genetics

community 
ecology

unit gene individual

diversity alleles species

source of 
diversity

mutation speciation

Neutrality as a working hypothesis 
for biodiversity 

Classical case study: tropical 
forests. Recently applied to 

plankton and bacterial communities

Hubbell (2001), SP et al. (2004), Alonso et al. (2006) 

Neutral theory
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Biodiversity across spatial scales
Amazonia

103km2

 7x106km2

5 km2

50 m2

Species Area Laws =  
S vs A?
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Biodiversity across spatial scales
Amazonia

103km2

 7x106km2

5 km2

50 m2

Species Area Laws =  
S vs A?

July 1999 GLOBAL PATTERNS OF PLANT INVASIONS 1527 

TABLE 3. Extended. 

Independent variables 
I R Residuals from Model 3 SE of estimate 

as percentage 
Coefficient 1 SE Coefficient 1 SE Coefficient 1 SE Adjusted r2 of mean 

0.12 37 
0.28 22 
0.78 8 

0.42*** 0.07 -0.35*** 0.06 0.69 15 
0.28* 0.10 -0.41*** 0.10 0.46 19 
0.36*** 0.09 -0.28** 0.09 0.22*** 0.04 0.61 16 

log N, with island status indicated by the coding vari- 
able I (for islands, I = 1; for mainland, I = 0), and 
reserves by the variable R (for reserves, R = 1; for 
nonreserves, R = 0). The model explained 69% of the 
variance in log E (Fig. 4; Model 4 in Table 3). Thus, 
a simple model involving only three explanatory vari- 
ables (the number of native species, and whether the 
site is an island or a park) can account reasonably well 
for most of the variation in the number of exotic species 
around the world. The coefficients 0.42 for I and -0.35 
for R indicate that (taking antilogs) islands, on average, 
possess 2.6 times as many exotics as mainland sites of 
similar native diversities, whereas nonreserve sites 
have 2.2 times as many exotics as reserves. 

Separating effects of native species richness from 
those of site area 

Although native species richness effectively de- 
scribes much of the variation in exotic richness, it is 
still informative to partition this effect into two com- 
ponents: the effect due to the area of the site, and that 
due to its native species richness. To do this, I first fit 
the model for log exotic richness against log area, and 
park and island status, to examine the explanatory pow- 
er of area alone (for the 104 sites for which area data 
exist). All of the parameters were significant, but the 
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FIG. 2. The relationship between the fraction of the flora 

that is exotic, X, and the area of the site, A (r = 0.35, n = 
104, P = 0.00027). The fitted regression line is Model 1 in 
Table 3. Note the log scale of the x-axis. 

model explained a comparatively unimpressive 42% of 
the variance in log E (Model 5 in Table 3; Fig. 5). 

We can now add the standardized residuals from 
Model 3 (Table 3), the regression of native species 
richness on area, as an indication of the degree to which 
each site differs from the central area trend in native 
richness. In this way, we are partitioning the variance 
in exotic species richness between the effects due to 
native richness and those due to the area of the site. A 
multiple regression of log E against log A, island and 
park status, and the native richness residuals from Mod- 
el 3 accounted for 62% of the variance in log E (Model 
6 in Table 3). All of the coefficients for the explanatory 
variables were highly significant (Table 3). This model 
explained significantly more of the overall variance 
than that explained in terms of area alone (F1 103 - 

38.7, P < 0.001 for the contribution of native richness 
residuals to the explanatory power of the model). In- 
deed, the native richness residuals explained about the 
same amount of variation as did site area (Table 4). 
The positive coefficient for native richness residuals in 
Model 6 indicates that alien species richness was pos- 
itively related to native species richness (Fig. 6). This 
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FIG. 3. The relationship between the number of native 
species and site area for 104 sites around the world, broken 
down into island reserves (0), island nonreserves (A), main- 
land reserves (@), and mainland nonreserves (A). The fitted 
line is Model 3 (Table 3). Note the log scale of both axes. 

S 

Lonsdale (1999)

Black Forest
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S∝cAz  z is scale-dependent 
z≈1   for small & large scales 
z<1   non-trivial (intermediate scales)

from Horner-Devine et al (2004)
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Spatial neutral model

Stochastic Spatial Models in Ecology: A Statistical… 47

X

death event

speciation event reproduction event 

P=(1-ν)P=ν

Fig. 1 Examples of transitions in the 2D voter model with speciation

Most of this section will be devoted to the ecologically relevant case where the system is
a two-dimensional (2D) square lattice, although we will briefly present some results in 1D
for comparison.

2.2 Duality

The voter model with speciation is dual to a system of coalescing random walkers with
an annihilation rate [10,31,47]. In this context, “duality” means that each trajectory of one
system can be mapped in one of the other system having equal probability [47]. The dual
process is constructed as follows. We start by placing on each lattice site a random walker.
The dynamic of the dual process proceeds backward in time. At each discrete (backward)
time step, with probability 1 − ν, a randomly chosen walker is moved to a new site, where
the dispersal kernel P(r) here plays the role of the distribution of possible displacements. If
the site is occupied, the two walkers coalesce, i.e. one of the two is removed keeping trace of
the coalescing partner. With complementary probability ν a randomly chosen randomwalker
is annihilated, i.e. removed from the system. This event corresponds to a speciation event
in the forward dynamics. The whole tree of coalescing random walkers, before annihilation,
represents the entire genealogical tree of a species up to the speciation event that originated
it.

The standard forward in time evolution of the voter-model with speciation and its dual
dynamics are sketched, for the one-dimensional case, in Fig. 2a and b, respectively.

Duality is a very useful property to understand the physics of the votermodel. For example,
it immediately stems from duality that the ν → 0 limit is fundamentally different in D ≤ 2
and D > 2. As a matter of fact, in D ≤ 2 the random walk is recurrent, meaning that the
probability of two randomly chosen individuals to belong to the same species approaches
one as ν → 0. In other words, in the absence of speciation, one has monodominance of one
species in the long term. The same property does not hold in D > 2, where random walkers
are not recurrent and, in an infinite system, multiple species coexist on the long term even
in the limit ν → 0. Interestingly, the ecologically most relevant case, D = 2, is the critical
dimension of this model. We shall see that this fact is a source of non-trivial behaviors of
ecologically relevant quantities.

123
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Choice of dispersal kernel

Nearest-Neighbor
General Kernel 
of range K  
(e.g. Gaussian, Square) 
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1D voter model coalescing - annihilating walkers
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2D voter model, NN 2D voter model, K=7

a) b)

c) d)

Fig. 2 a) Example of space-time dynamics of the 1D voter model with speciation.
b) Corresponding dual dynamics: coalescing and annihilating random walkers. c)
Snapshot of a configuration of the 2D voter model simulated with the dual dynam-
ics, with ν = 5 10−7 and nearest-neighbor (NN) dispersal. d) Same as c) but with
a longer dispersal range (uniformly distributed in a square of side K) with K = 7.
Each color labels a different species.

tance. We define the β-diversity as the probability F (r), that two randomly
chosen individuals at a distance r are conspecific, i.e. belong to the same
species. We remark that, although this is the natural definition in this con-
text, other definitions have been used in the ecological literature [100]. Math-
ematically, F (r) can be expressed in terms of the two-point correlation func-
tion Gsi,sj (r) = 〈nsi(x)nsj (x + r)〉, where nsi(x) denotes the number of
individuals of species si at location x

F (r) =

∑

i Gsi,si(r)
∑

i,j Gsi,sj (r)
, (1)

where the sums extend over all species in the ecosystem [5]. Eq. (1) can be
used to estimate the β-diversity as the ratio between the couples of conspecific
over the total number of couples in a sample.

Let us now study the evolution equation of F (r, t) for the voter model
with speciation and NN dispersal. Although we shall focus on the 2D case,
it is useful to present the general calculation in D dimensions. Following [16,

4

2 Voter Model with speciation

2.1 Description of the model

A paradigmatic example of spatial neutral model is the voter model with spe-
ciation, [30], which is is a multispecies generalization of the voter model [60].
The latter is a widely studied model that has been applied in diverse con-
texts, from population genetics to spatial conflicts [20], spreading of epidemic
diseases [81], opinion dynamics [13] and linguistics [24].

The voter model with speciation is defined on a lattice, where each site
hosts one individual belonging to some species. At each discrete time step, a
lattice site is chosen at random and the residing individual is removed (death
event). Then, as illustrated Fig. 1, the dead individual is replaced:

– With probability ν, by an individual of a new species not present in the
system (speciation event). Notice that, because of speciation, the total
number of species is not fixed. In population genetics, this type of event
is interpreted as a mutation within the same species [70,54].

– With complementary probability (1−ν), by a new individual of an existing
species (reproduction event). In this case, the newborn belongs to the
same species of a parent individual chosen at random in the neighborhood
of the vacant site. In the simplest case, the nearest-neighbors (NN) are
chosen with uniform probability. More generally, the parent individual is
selected according to a probability distribution P (r) (the dispersal kernel)
over the neighbors within a distance r.

X

death event

speciation event reproduction event 

P=(1-ν)P=ν

Fig. 1 Examples of transitions in the 2D voter model with speciation.

Most of this section will be devoted to the ecologically relevant case where
the system is a two-dimensional (2D) square lattice, although we will briefly
present some results in 1D for comparison.

SP and M. Cencini, JTB 2009; SP et al. JSP 2018

Nearest-neighbor dispersal Long-distance dispersal

Spatial neutral models
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Duality
48 S. Pigolotti et al.

X

1D voter model coalescing - annihilating walkers

tim
e

reverse tim
e

2D voter model, NN 2D voter model, K=7

(b)(a)

(c) (d)

Fig. 2 a Example of space-time dynamics of the 1D voter model with speciation. b Corresponding dual
dynamics: coalescing and annihilating random walkers. c Snapshot of a configuration of the 2D voter model
simulated with the dual dynamics,with ν = 5 × 10−7 and nearest-neighbor (NN) dispersal. d Same as c but
with a longer dispersal range (uniformly distributed in a square of side K ) with K = 7. Each color labels a
different species (Color figure online)

Duality is also an extremely powerful tool for computational analyses [77,87]. If one
is interested in the static, long-term, properties of the voter model with speciation, it is
numerically much more efficient to simulate the dual dynamics than the forward one. In a
dual simulation, after all walkers coalesced or were annihilated, species can be assigned to
the start site of each walker, obtaining a stationary configuration of the voter model. Beside
computational speed, this approach has also the advantage of eliminating finite-size effects
induced by the boundary conditions, as the coalescing random walkers can be simulated in a
virtually infinite system. For illustrative purposes, in Fig. 2c and dwe show two configurations
of the 2D voter model obtained with the dual dynamics for two different dispersal kernels.

2.3 β-Diversity

The first ecological pattern we consider is the β-diversity, which is a measure of how the
species composition in an ecosystem varies with the distance. We define the β-diversity as
the probability F(r), that two randomly chosen individuals at a distance r are conspecific, i.e.
belong to the same species. We remark that, although this is the natural definition in this con-

123
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SAR for ν=10-5  K=10

K2 ν-1

Species-area laws are 
qualitatively reproduced by the 
model 

(Chave et al. 2002, Rosindell et al 2007)

1.   How does z depend on the dispersal kernel? 
2.   How does z depend on the speciation rate?

z<1

z≈1

z≈1

SP and M. Cencini, JTB (2009)

Results
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Coalescing random walkers

Asymptotic behavior of the density of walkers 
(Bramson and Lebowitz 1991):

2D is the critical dimension (logarithmic 
decay, finite asymptotic density above 2D)

A + A -> A

Outcome determined by the interplay between S(t) and  
the killing rate -> power laws only in 2D
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predicted beta-diversity suggests, however,
that habitat variation is the cause of at least
some species turnover in Panama. Variance
in similarity at a given distance is three times
higher in Panama than in Amazonia (18), but
according to the theory, variance can be due
only to sampling error, which should be iden-
tical in both regions. Furthermore, there are
instances where Panamanian plots on distinct
substrate differ more in vegetation than plots
on the same substrate (4, 19). Is species
turnover steepened by habitat variation in
Panama but governed chiefly by dispersal
limitation in western Amazonia?

It seems not. Even in Amazonia, dispersal
theory alone is insufficient: It cannot simulta-
neously accommodate the very steep decay in
similarity observed in Ecuador from 0 to 100 m,
the more gradual decline seen at both sites in
Amazonia between 0.5 and 50 km, and the very
slight decline between 50 km and 1400 km
(Fig. 2; the steep decline within 100 m was also
observed in Panama). The dispersal parameter
! must be set to 16 m to fit the data from 0 to

100 m in the 25-ha plot in Ecuador, 55 m to fit
the data from 0.2 to 50 km in Ecuador, and
81 m to fit the similarity between Ecuador and
Peru. This suggests that different factors influ-
ence beta-diversity at different scales.

The rapid decline of similarity at short
distance suggests that species are more ag-
gregated than dispersal theory predicts. This
may reflect old light gaps that only a few
species happened to colonize or high varia-
tion in adult reproductive output; both can
produce dense aggregations of conspecifics
(20). The high similarity between Ecuador
and Peru arises because many tree species are
common at both sites (6), suggesting a factor
favoring similarity that partially overrides
dispersal limitation (21). For example, the
palm Iriartea deltoidea is the most common
species in most plots in Ecuador and Peru (6),
as well as at one wet site in Panama. Our
dispersal theory cannot account for such an
abundant, widespread species. High similari-
ty over long distances could reflect equili-
brating processes that control density of spe-

cies over wide areas, such as differences in
life history or pest resistance. Once a species
reaches a site, its population tends toward a
“preferred” density, overcoming the influ-
ence of dispersal limitation.

We have shown striking differences in
beta-diversity in forests of Central Panama
versus western Amazonia and have argued
that the patterns cannot be explained by lim-
ited dispersal and speciation alone. Although
our null model fits species turnover for plots
separated by 0.2 to 50 km, discrepancies at
other scales suggest that additional factors
must be important. The role of habitat heter-
ogeneity at local scales and the impact of
widespread species would not have been ev-
ident without a quantitative null model for
beta-diversity. A full understanding of turn-
over in tree species composition at all scales
will require reckoning not only with specia-
tion and limited dispersal but with habitat
structure and species differences.
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Fig. 2. The probability
F that randomly se-
lected pairs of trees
are the same species,
as a function of dis-
tance r, on a semiloga-
rithmic scale, in Pana-
ma (top) and Ecuador
(bottom), and a best
fit of the dispersal
model to the data for
r & 100 m. Within the
large plots (‚), F was
calculated in 5-m dis-
tance categories from
all pairs of individual
trees (8). Because
there is some habitat
variation in species
composition in the
50-ha BCI plot (27),
we only used pairs
when both trees were
on the lower part of
the flat plateau in the
center of the plot, ex-
cluding the slopes
around it, a swamp,
and the higher part of
the plateau. Likewise,
in the Yasunı́ 25-ha
plot, we only consider
pairs when both trees
were on ridges, ex-
cluding a flat, wet val-
ley. For 1-ha plots (●), F was found by summing the product of relative abundances from each plot
(8), and results are presented as the mean and bootstrap-estimated confidence limits for F within
several distance categories. The prediction from Eqs. 1 and 2 was found by setting ' $ one tree per
23.3 m2 in Panama and one tree per 15.3 m2 in Ecuador, the observed tree densities. Then distance
r must be measured in “tree units,” so a unit of distance is 4.8 m in Panama and 3.9 m in Ecuador;
in the figure, distances were reconverted to kilometers. The parameters ! and ( were fit to the data
(including F in large plots from distance bins where the sample size exceeded 1000 but with r &
100 m and all 1-ha plots) by minimizing the sum of squared deviations with a Nelder-Mead search.
The lines show the resulting fit: Panama, ! $ 40.2, ( $ 4.8 ) 10#8; Ecuador, ! $ 54.8, ( $ 3.6 )
10#11; and Peru (not shown), ! $ 73.0, ( $ 1.7 ) 10#14 . The solid line is from Eq. 1, and the
dashed line is from Eq. 2.
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Beta diversity (correlation function)

F (r) ⇠ 1

ln r

Probability that two trees at a distance 
r belong to the same species
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The exponent depends weakly on dispersal
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Local exponent

We managed to optimize the algorithm to simulate the model for
very low speciation rates, down to n ¼ 10"11. Details on how the
simulations have been performed and the statistics have been
collected can be found in Appendix A; see also Rosindell et al.
(2008) for other possible improvements of the coalescence
algorithm. As for the dispersal, we explored both the NN and
the square kernels, for the latter K has been varied in the range
K ¼ 3264, though we shall mostly present the results for K ¼ 7
(see the discussion in the next section).

3. Numerical results

We begin studying SAR curves obtained at fixed dispersal
range (K ¼ 7) and varying n, as shown in Fig. 1. All curves display a
fast growth for small areas with a crossover, for areas of the order
of the dispersal kernel (A # K2), to the power-law regime. The
final regime where the number of species becomes linear with the
area can be detected only for rather large speciation-rate values,
10"5 $ n $ 10"3; to observe it at lower values of n much larger
simulation samples would be required. In the inset, we plot the
‘‘local species–area exponent’’ for each curve, dðln SÞ=dðlnAÞ,
which clearly shows that the smaller n the smaller the exponent
becomes and the larger is the range of scales where a well defined
power-law behavior establishes. Finally, when the parameter n is
not too small, it is possible to observe also the final linear regime
which occurs for areas much larger than n"1 (Durrett and Levin,
1996).

Fig. 2 (left and middle panel) exemplifies the behavior of
species–area curves at fixed n and different dispersal range K. At
increasing the dispersal range the onset of the power-law regime
shifts at larger areas, apparently without affecting the exponent. A
more careful analysis of the local exponents dðln SÞ=dðlnAÞ, shown
in the right panel, detects a dependence of the value of the
exponent on the dispersal range when this is small, Kt5,
including the NN case.

On the other hand, when K\5, we did not observe any
appreciable corrections to the value of the exponent. The
independence against variations of K, when it is large enough,
has been quantified by Rosindell and Cornell (2007), who have
shown that curves obtained with different (not too small) K can be

rescaled on a universal function of A and n only via the
transformation:

S ¼ f ðA; n; LÞ ¼ KrfðA=Kr ; nÞ (1)

characterized by the scaling exponent r # 1:97. We checked that
this relation holds also with the small values of n that we studied,
for instance the insets of Fig. 2 (left and middle panel) show it for
n ¼ 10"5 and 10"8. We will then study in the following the NN
and the K ¼ 7 cases, the former being that originally studied by
Durrett and Levin (1996) and the latter being representative of the
behavior of the model for large average dispersal distances.

We now turn to the main results of this paper about the
dependence of z on n. In Fig. 3 (left) we show the exponent z as a
function of the speciation rate n (see Appendix A for a discussion
on how we estimated z). We observe a clear discrepancy with
previous predictions (Durrett and Levin, 1996; Rosindell and
Cornell, 2007) (also shown in the picture). In particular, for n51,
we found the data to fall into a straight line when plotting 1=z vs
lnðnÞ (Fig. 3 right), suggesting the following functional
dependence:

z ¼
1

qþm lnðnÞ , (2)

by which we obtained a best fit to the data with q # "3:3 and
m # "0:72. To compare our results with previous studies of these
models, notice that the power-law fit suggested in by Rosindell
and Cornell (2007) agrees with the data in the same range of
speciation-rate values, i.e. n ( 10"5. Deviation from a power-law
behavior are clearly observed for lower values of n, where the data
also rule out the saturation at z # 0:2 predicted by Zillio et al.
(2005). Actually, our fit confirms Durrett and Levin (1996)
prediction of a logarithmic decay of z with n, up to corrections
order OðlnðlnðnÞÞÞ. However, the fitting parameters m and q for
both the square kernel with K ¼ 7 and the NN kernel are very
different from those of Durrett and Levin (see caption of Fig. 3).
We conjecture that the differences in prefactors could be caused
by two different assumptions used by Durrett and Levin (1996) to
derive the dependence of z on n. The first is about pre-asymptotic
effects: the statistical results used by Durrett and Levin are strictly
valid only when t ! 1 which requires n ! 0, while finite-time
corrections may affect the exponent value. In this respect, also for
our data the n ! 0 limit seems to be crucial for the validity of the
fit (2). The second is the assumption that a power-law regime
establishes from A ¼ 1 to n"1. Conversely, we observe the onset of
the power law for areas being slightly larger than 1 even in the NN
case. Moreover, the crossover to the linear asymptotic regime
begins for areas quite smaller than 1=n.

It should be noticed that discrepancies in the numerical factors
have profound implications when the model is used to estimate a
speciation rate from an observed species area exponent. The
logarithmic dependence of z on n makes, in fact, n exponentially
dependent on z. We will discuss in the next section how this
dependence can be compared with experimental data. It should
also be remarked that both Durrett and Levin prediction and
Eq. (2) are valid for small values of n and can lead to incorrect
results, such as negative z, for n close to 1.

All simulations so far presented have been performed with
open boundary conditions, which are appropriate when the
sample is a homogeneous portion of a much larger ecosystem.
However, closed boundary conditions can be of interest for
modeling confined ecosystems such as islands. Intuitively, open
boundaries allow new species to immigrate into the sampled
system from the external infinite ecosystem, independently of the
speciation events. Closed boundaries exclude this possibility and
are thus expected to reduce the exponent z and, in general, species
richness. Fixing the speciation rate n the decreasing of z becomes
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Number of species S as a function of the sampled area A for different speciation rates as in the caption. The
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K = 7. b Local slopes, d ln S/d ln A for the curves shown in panel a. c Dependence of the exponent z on
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prediction of Eq. (8) (black solid line) where the black triangles correspond to the values provided in [31]. d
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per walker ν times the number of walkers in the absence of annihilations ξ2ρ(t). Integrating
over time, we find that the total number of annihilations, i.e. the total number of species, is
[10]

S(ξ2) ≈ νξ2
∫ 1/ν=ξ2

t0
dt ρ(t) = ln2(ξ2) − ln2(t0)

2π
≈ 2

π
(ln ξ)2 , (7)

where t0 is the time at which the asymptotic expression (6) starts to be valid. The upper
temporal cut-off is set to 1/ν (with 1/ν = ξ2) because the number of killing events occurring
after a time ∼ 1/ν is bounded by the number of walkers in the system, which is ξ2ρ(1/ν) ∼
ln ξ [10]. Finally, combining Eq. (7), the fact that S(1) = 1 and matching a power law
behavior S = Az in the range of scales from A = 1 to A = ξ2, one finds [31]

z = ln [S (A)]
ln (A)

= 2 ln[ln(1/√ν)] + ln(2/π)
ln(1/ν)

. (8)

Also in this case, the logarithmic dependence of the exponent z on ν derives from the fact
that D = 2 is the critical dimension for the voter model.
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direction of a more quantitative comparison between field data
and the model results.

As a first step, we assume that the model is able to describe the
main features of groups of trophically similar species and explore
the consequences of this assumption. This requires that a
speciation rate and a dispersal range for the whole group of
species can be properly defined, although we know that specia-
tion rates (Mariakeva and Gorshkov, 2004) and dispersal ranges
(Nathan and Muller-Landau, 2000; Kinlan and Gaines, 2003) may
have significant variations from species to species. However, in
the model the exponent is essentially independent on the
dispersal range and depends only logarithmically from the
speciation rate, so that these variations might be disregarded
treating all species in the group as having the same ‘‘average’’
dispersal range and speciation rate.

As far as dispersal is concerned, we only found a tiny
dependence for very short dispersal range, around Ko5. Above
these values the exponent is independent of the dispersal range
confirming previous results (Rosindell and Cornell, 2007). Realis-
tic average dispersal ranges (Nathan and Muller-Landau, 2000;
Kinlan and Gaines, 2003) are certainly far from the short dispersal
case, due to animal motility or wind for seeds. Therefore, we
assume that the dispersal range of real groups of species is always
in the range where the exponent is dispersal-independent. It is
however worth remarking that the dispersal range can still affect
the spatial biodiversity via the power-law prefactor, whose
increase can lead to a large number of species that, when z is
small, increases very slowly with the area. In this respect, the
model outcomes are in contrast with interpretations of low values
for z in bacteria as an effect of large dispersal distances as argued
in Drakare et al. (2006) and Horner-Devine et al. (2004).

What about speciation? Unfortunately, we do not have
ecological data allowing us to directly estimate the frequency of
speciation events. Data from fossils suggest an average speciation
rate on Earth of about three specie per year (Sepkoski, 1998), but it
is hard to infer from this number a reasonable rate for a living
system. Also estimates based on mutation rates (Mariakeva and
Gorshkov, 2004) could be flawed due to genetic bottlenecks and
phenomena like horizontal gene transfer (Jain et al., 1999).
Moreover, as discussed in the Model section, the parameter n
should be interpreted as an ‘‘effective’’ speciation rate, incorpor-
ating also long-range dispersal events. Within the model frame-
work, our results show that species–area exponent and
dimensionless speciation rate n are related even when the latter
is very small, implying that an observed value of the exponent z
would predict the rate of introduction of new species n.
Remarkably, the existence of positive correlations of these two
quantities is consistent with observational results. As an example,
it is known that close to the equator species–area exponents tend
to increase (Drakare et al., 2006) together with speciation rates
(Allen and Gillooly, 2006) and overall biodiversity (Stevens, 1986).

In order to test the ecological plausibility of the relation
between z and n, we make use of the definition of n as the ratio be-
tween the speciation rate s and the death rate d. From Eq. (2) and
separating the contribution from the variation in the speciation
rate from that of the variation in the death rate, we have

1
z
¼ qþm lnðnÞ ¼ qþm½lnðsÞ & lnðdÞ', (3)

where the arguments of the logarithm are made dimensionless by
measuring them in the same units. To ease the interpretation, we
recast this equality in the time domain using the lifespans t ¼ 1=d
and the average time between speciation events tðsÞ ¼ 1=s:

1
z
¼ qþm½lnðtÞ & lnðtðsÞÞ'. (4)

The first term on the right-hand side accounts for the variation in
z due to the lifespan which is, of course, much easier to estimate
than the term due to speciation time and can still be important
and informative. Indeed there are evidences that taxa having
a shorter generation time have generally lower species area
exponents (Horner-Devine et al., 2004; Green and et al., 2004;
Zhou et al., 2008) (we recall that m is negative). We thus study
how the inverse exponent 1=z varies with the logarithm of the
lifespan. The results of this analysis are presented in Fig. 5 for data
obtained from the literature (see Appendix B for a description of
how data have been collected), which shows that a linear
relationship fits rather well the data, with an observed slope
mmeas ¼ &1:76( 0:13 (dashed line in the figure) which is different
from m ) &0:72 predicted by the voter model.

The fact that for species–area exponents measured in field
data we found 1=z / lnðtÞ suggests a scaling relationship between
speciation time and lifespan, i.e. that tðsÞ*tg, so that mmeas ¼
mð1& gÞ, as clear by substitution in the previous formula. We do
not have any a priori explanation for justifying a power-law
dependence of the speciation time on the lifespan, apart from the
observation that the variations of many ecologically relevant rates
among species are governed by scaling laws (Brown et al., 2004).
We are not aware of independent estimation of the dependence of
the speciation time on the lifespan so to confirm or reject the
outcome of our analysis.

However, the relation mmeas ¼ mð1& gÞ, with m and mmeas fixed
by the voter model and field data, respectively, yields a negative g.
This result is in contrast with biological expectations as it would
imply, e.g. a speciation time for bacteria much longer than the one
for trees, which is hard to justify biologically. Reasonable
expectations would have been 0ogo1. The limiting case of g ¼
1 is the trivial case in which speciation time is proportional to the
lifespan. This would have lead tommeas ¼ 0, i.e. same n ¼ t=tðsÞ and
z for all taxa. The other limiting case is g ¼ 0, which is plausible
when the possibility of creating a new species is triggered by
some external mechanism, like the availability of new niches,
which is not strongly correlated to any particular feature of the
species. Another justification could come from co-evolutionary
mechanisms: species having very different lifespans can still
evolve on similar timescales due to their ecological interactions
(Thompson and Jeremy, 1992). Actually, co-speciation is known to
occur in some cases of host–parasite systems (Clayton et al.,
2003). In this case, one would find mmeas ¼ m.

The inconsistent value of g we obtained can be interpreted
either as a failure of the basic assumptions of the neutral model
and thus of its inadequacy in describing realistic ecosystems or as
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Ecosystems and critical phenomena

• Ecosystems show power-law behaviors consistent 
with the voter model universality class 

• 2D is the critical dimension, logarithmic correction 

• Scale invariance is broken at the critical 
dimension (logarithmic corrections)
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We have chosen a NN dispersal kernel in all panels (Color figure online)

consider the model on a 2D square lattice. Sites of the lattice can be occupied by individuals
belonging to different species or empty. The model is defined in continuous time; each
individual dies at a rate d and reproduces at a rate b. In case of a death, the site is simply
left vacant. A reproduction event is considered successful only if the individual has at least
one vacant neighboring site. In such a case, one of the vacant neighboring sites is chosen at
random.With probability ν, the site is occupied by an individual of a new species (speciation
event); with complementary probability, (1 − ν), the newborn is of the same species as the
parent.

As in the standard contact process [42,47], the parameter determining the asymptotic
density of occupied sites ρ is the dimensionless birth-to-death ratio η = b/d . For η < ηc ≈
1.649 the absorbing state in which all sites are empty is stable. A non-equilibrium phase
transition at η = ηc separates this region from a stable active phase (η > ηc) characterized
by a non-vanishing value of ρ that depends on η [46,63]. For η → ∞ one has ρ → 1 and
the model is equivalent to the voter model with speciation [30].

The CP is a self-dual model. Therefore, duality cannot be exploited in numerical simu-
lations as in the case of the voter model. Forward simulations show that the SAR and the
corresponding exponents are remarkably similar to the voter model with speciation even at
small values of η, corresponding to very fragmented ecosystems as shown in Fig. 10. For
values of η very close to ηc (but within the active phase) and small values of ν, SAR exponents
tend to be smaller than in the voter model, see inset of Fig. 10.

123

Non-saturated environments

Cencini et al. Plos One (2012), Pigolotti et al. JSP (2018)
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where ! is an exponent that is >1 [see supporting information
(SI) Appendix for details and derivation]. In the trivial case of all
the nks being proportional to each other, ! = 1. Such behavior is
expected in noninteracting, unconstrained random situations such
as randomly distributed individuals. We show instead that ecolog-
ical communities lie in a distinct class characterized by ! = 1,
but with logarithmic corrections in the relationship between the
nks and n1 for k > 1. These nontrivial corrections likely arise
from interactions between individuals in the system. Unlike the
conventional critical case (! > 1), one has incipient critical-
ity, characterized by the presence of scaling relationships (see
below) in the absence of pure power-law behavior. Such loga-
rithmic corrections also arise in conventional critical phenomena
at the “upper-critical dimension” (5) in which the behavior of the
system is marginally sensitive to the presence of fluctuations.

To deduce the characteristic abundance scale f (A) and the expo-
nent ! from empirical data, we outline a simple finite-size scaling
approach. We make the scaling postulate that the n dependence
of P(n|A) can be captured by a “dimensionless” scaling variable
n/f (A), i.e., P(n|A) ∼ F(n/f (A)), where F is a suitable function
that decays to zero rapidly when n is much larger than its char-
acteristic value, f (A), a condition that is satisfied because there
are few, if any, species whose abundance is much greater than this
characteristic value. The function F is multiplied by a suitable fac-
tor, g(A), to ensure that P is normalized. Our scaling hypothesis
is thus:

P(n|A) = g(A)F(n/f (A)). [4]

Whether or not the data satisfy the scaling hypothesis, Eq. 4, can
be determined by plotting P(n|A)/g(A) versus x = n/f (A) for a
range of areas and assessing whether the data collapse (8) onto
a single curve, F(x). The key simplicity underlying such a scaling
hypothesis is that the scale-dependent RSA is no longer an arbi-
trary function of the two variables n and A, but is postulated to
satisfy a much simpler scaling form embodied in Eq. 4. In critical
phenomena (1–6, 8, 9), in coarsening dynamics (7), and in other
contexts in which power laws are observed (10–12, 18–20), the two
functions f and g are power laws of A. Here, we do not impose
such restrictions.

Results
We analyzed two different sets of ecological data, one from a
serpentine grassland characterized by an approximate power-law
SAR (21) and the other from the Barro Colorado Island (BCI) for-
est in Panama (22, 23) for which the SAR shows deviations from
power-law behavior at all scales (24–27). The best fit is indeed
obtained with ! = 1 with nontrivial logarithmic corrections. The
scaling collapse is carried out with one adjustable parameter a′

(see Materials and Methods): for various values of A, one plots
ln〈n〉A(1+ a′

2 ln〈n〉A)C(n|A) versus n/f (A) and assesses the quality
of the collapse. For the ranges of A and n values shown, Fig. 1B
shows a collapse plot (28) for the serpentine grassland plot with
a′ = −0.12±0.01. The scaling collapse provides a unification of the
SAR and the RSA measured at different scales, in the sense that
the scaling of the RSA at different scales is determined by the SAR
through the term 〈n〉A in Eqs. 14 and 15. Likewise, Fig. 2B depicts
the collapse plot for the BCI data with a choice of a′ = 0.06±0.01.
The error estimates are obtained by performing a set of collapse
plots, each time excluding a single RSA curve, and calculating the
variance of the distribution of the resulting a′ values.

In the best fit case, ! = 1, one predicts to lowest order that

〈nk〉 =
∫ ∞

1
dn nk P(n|A) ⇒ 〈nk〉 ∝ f (A)k+1g(A) k ≥ 0, [5]

and thus

nk(A) = f (A) for all k ≥ 2, [6]

Fig. 1. Collapse plot for serpentine grassland data. (A) Plot of the cumula-
tive RSA C(n|A) =

∫ ∞
n P(t|A)dt for a serpentine grassland plot for different

areas. The average number of individuals N and the average number of
species S are indicated. (B) Scaling collapse plot of the cumulative RSA curves
for the serpentine grassland plot. The axes are rescaled according to Eq. 15
and the parameter a′ has been chosen to be −0.12.

with f (A) defined in Eq. 12. Fig. 3 confirms the approximate valid-
ity of the above prediction in the limit of large enough A. The
agreement is better for the BCI forest than for the serpentine
grassland because of its larger size and especially because the ser-
pentine grassland is species poor (only 24 species instead of ∼300
in BCI).

Discussion
Despite their differences, both the BCI forest and the serpentine
grassland are characterized by ! = 1 with nontrivial logarithmic
corrections. In critical phenomena, when two distinct systems are
characterized by the same set of critical exponents, they are said to
belong to the same “universality class.” For example, the liquid–
vapor critical point is in the same universality class as the onset
of ordering of a binary alloy such as brass. One obtains the same
set of critical exponents for those systems, even though they are
quite distinct at the atomic scale. What is remarkable in critical
phenomena is that, despite the immense variety of systems, there
are just a few universality classes that depend only on essential
features, such as the spatial dimensionality and the symmetry of
the ordering. We find that, despite their apparent differences, the
well-known Fisher log series (29), the BCI forest, and the serpen-
tine grassland have an underlying deep commonality and lie in the
same universality class.

In physics, as a system approaches criticality, the correlations
between different parts of the system extend over increasingly
large distances, and when the system is precisely at the critical
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Fig. 5 SAD and data collapse. Results are presented for different linear system sizes and different speciation
rates ν, keeping the product Aν = 200 constant. a SADs for different linear sizes from L = 400 to L = 2500.
b Collapse of SADs by means of Eqs. (13) and (16). The fitted parameter in the functions f and g is ε = 0.08.
c Naive collapse without logarithmic corrections, where deviation for perfect collapse are evident. d Collapse
with the scaling form of Eqs. (13) and (16), but setting ε = 0. Also in this case the discrepancy is evident

g(A) = 1

〈n〉 ln2〈n〉
[
1+ ε

2 ln〈n〉
]2 (16)

up to first order in ε. Notice that both functions f and g include logarithmic corrections. By
means of a similar calculation, one can estimate the k-th moment 〈nk〉, and verify that all the
moment ratios 〈nk〉/〈nk−1〉 scale in the same way, up to a multiplicative constant

〈nk〉
〈nk−1〉 =

∫
dn nk P(n; A)∫
dn nk−1 P(n; A) ∝ f (A) k ≥ 1 . (17)

revealing a highly anomalous scaling.
Zillio et al. [105], showed that this scaling form provides a much better collapse of empir-

ical data from the Barro Colorado tropical forest than a power-law scaling relation such as
Eq. (12). This supports the idea that ∆ is close to its marginal value 1 in tropical forests.

We tested computationally whether Eqs. (13) and (16) provide a good collapse of SADs
obtained from the voter model with speciation and whether the relationship between the
moments, Eq. (17), holds. In simulations, an additional parameter is the speciation rate ν.
As discussed above, ν appears in scaling relationships via the dimensionless combination
AνD/2, that in 2D equals Aν. Thus, although Eqs. (13) and (16) do not include speciation
explicitly, we expect these relationships to hold if Aν is kept constant.We therefore performed
computational analyses fixing Aν = 200, although the conclusions are robust against this
choice. Results are summarized in Fig. 5 which shows plots of the SAD, for systems with
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Conclusion

• Ecosystems are non-equilibrium complex systems 
characterized by scaling behavior 

• 2D is the critical dimension for simple stochastic 
competition models 

• Consequences: non-trivial behavior of biodiversity, 
corrections to scaling 


