Non classical light generation and storage using cold atomic ensembles

Ravikumar Chinnarasu (Ph.d Candidate) Prof. Chih-Sung Chuu's group. Quantum Photonics Laboratory National Tsing Hua University

AMO summer school 2018

Long Distance Quantum Communication

Quantum Network

Different types of Quantum memories

Different types of Quantum memories

Biphoton generation- Spontaneous Four wave mixing

Narrow band biphotons

Rabi oscillation regime

50

0

 $\Delta \omega_s$ or $\Delta \omega_{as}$ (in MHz)

100

0.4

0.2

0.0

-100

-50

Rabi oscillation regime

Band width ~ Natural linewidth of the atoms

Temporal length ~ natural decay+ dephasing

Oscillation period is controlled by Coupling strength

Group delay regime

Temporal length and the bandwidth can be controlled easily by just simply Tuning the Rabi frequency and Optical Depth

Non classical nature verification

Pump Detuning γ_{13}	Ω_c γ_{13}	OD	CS violation factor	Estimated Bandwidth 2π (MHz)
13.3	5.5	15	65.7	16
16.7	2.6	20	4.4	2.80

Biphoton wavepackets

Part I- Conclusion & Work in progress

400 500

200

300 T(ns) Types of modulation techniques To arbitrarily shape the photons Paired photon generation with controllable delay / emission type Quantum memory

DLCZ Scheme

$$S = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{-i (\mathbf{k}_W - \mathbf{k}_w) \cdot \mathbf{r}_j} |g\rangle_j \langle S |g\rangle$$

$$\eta_{ret} \propto \left| \frac{1}{N} \sum_{j=1}^{N} e^{i v_j \cdot (k_W - k_w) t} \right|^2$$

Quantum Memory with Optically Trapped Atoms

Chih-Sung Chuu, ^{1,*} Thorsten Strassel, ^{1,+} Bo Zhao, ¹ Markus Koch, ¹ Yu-Ao Chen, ^{1,2} Shuai Chen, ¹ Zhen-Sheng Yuan, ^{1,2} Jörg Schmiedmayer, ³ and Jian-Wei Pan^{1,2} ¹Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany ²Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Heifei 230026, China ³Atominstitut der Österreichischen Universitäten, TU-Wien, A-1020 Vienna, Austria

(Received 19 May 2008; published 17 September 2008)

In the presence of Magnetic field

$$\Delta\omega(mF) = \frac{\Delta E(mF)}{\bar{h}} = \frac{\mu_B g_F m_F B}{\bar{h}}$$

$$|\psi(t)\rangle = \frac{1}{\sqrt{N}} \sum_{\sigma_{mF}=-2}^{2} \sum_{j=1}^{N_{\sigma_{mF}}} e^{i \int_0^t \Delta \omega_{\sigma_{mF}}(t') dt' + i x_j \cdot (k_W - k_W)} |g_1 \dots \cdot s_j \dots \cdot g_N\rangle$$
Periodic retrieval can be observed
Due to the temporal fluctuation of phase
$$\eta_{ret} \propto \left| \sum_{\sigma_{mF}=-2}^{2} C_{\sigma_{mF}} e^{i \frac{\mu_B |g_F| m_F B}{\bar{h}} t \sigma_{mF} t} \right|$$
Good & Bad \bigcirc

Results

Results

Conclusion & Outlook

- Our cigar shaped cold atomic system is a powerful platform for generating and storing photons without turning of the quadruple magnetic field gradient.
- We have generated heralded single photons to realize single photon absorptive type Quantum memory.
- Experimentally demonstrated in controlled(still need to be optimized) fashion of retrieval at different wavelengths

Thank you very much for your kind attention