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Intfroduction:
ose-Einstein Condensation
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’@ntroduction: Rydberg dressed BEC
\

A  Rydberg-dressed
BEC Is a gas of Bose-
condensed atoms whose
ground state |g> iIs far off-
resonantly coupled to a
highly excited Rydberg state
|le> with a Rabi frequency Q
much less than the
corresponding laser
detuning A.
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%\troduction: Rydberg-dressed BEC

’}  Non-local GPE

h2vV?2

=+ Veuln) + g|W(r,n?

tho,V(r,t) = |:—

+ / U(r—r') |lIf(r’,t)|2dr’} U(r,1),

where
Co
RS+ |r — /|

U(r-r') = long-range vdW interaction between Rydberg-dressed ground-
state atoms.

Cs = Effective coupling constant
R = Blockade radius

Ur—r1r)=
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%\troduction: Rydberg-dressed BEC

\

« Dimensionless nonlocal-GPE (1-dimension)
Introduce the following parameter

1
~ ot . PP > ~ R
f=—, 7= 2, P(Z,t) =aP(zt> P —— )
ts Ao __4ma and o = Cem
Together with the scaling length an! a, arn?’
h 1 . .
a, = , fS - — Long range Iinteraction
LR Wz dressed coupling
We obtain :

0,W(x,6) = =22+ () +VI¥(Z O +

2 0z%

[ |‘P(z’,t)|2dz" W(z,t)

(R2+|z-2"19)



b
p Antroduction: Rydberg-dressed BEC

Superfluid « Supersolid

Possessing crystalline
and superfluid properties
simultaneously !!

Exactly same
as the short
range BEC !!

View of 2-D from the top




Introduction: Disorder
Potential

= How to produce disorder ??

speckle pattern bichromatic lattice




Introduction: Disorder

i Potential

Experimental setup for the speckle potential
and the imaging svstem for a BEC
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Introduction: Disorder

i Potential

The disorder potential from speckle

potential is defined by the auto-
correlation function:

<Vdis(Z)Vdis(Z + ﬂz)) — Vg exp(—ZAzz/Jg)

—%

V5 = strength of Vg
op = disorder correlation length

(I(z)I(z + Az))
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i Dramatic effects of disorder

= Although this effect is wealk, it is not always
can be ignored in first approximation.

= A small amount of disorder can strongly
effect the properties of physical systems

= Examples:

0 In classical systems: Brownian motion,
percolation, etc.

0 In quantum systems: Quantum chaos,
superconductor-insulator transition,
Anderson Localization, etc.



ntrodu
Localization (AL)

Anderson studied the transport of

. 2%+ Localized wavetungtion
non-interacting\ electrons in a
Wil crystal lattl (1958) reported

< g :'-}{ for fir ence of

FUbIed sty a  critical amount of random

xl Y ) 7 impuritie [¢| ~ exp(=|r — 7;]/€).jon of an

i b electron will come to a halt. This

- constitutes the idea of electron

localization due to a destructive
interference of particles (waves).




NUMERICAL APPROACH
Experimental Method (Hulet, et al. [Phys. Rev. A

82, 033603]
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NUMERICAL APPROACH

Numerical method

To obtain an 1nitial wave function with a velocity
vy, we apply the Galilean transformation:

Y = wexp(imuyz)
and the corresponding non-local GPE for the
residual wave function @ is

2

1/h m
E(—.az—mvo) ‘|‘§(wz222)+Vdis(z)+g|€9(z,t)|2

tho,@p(z,t) = ;

Ce
+ Z O?dz' | o(z,t
f(RC6+Iz—z’|6)|(P( )2dz | @(z, 1)



THE BEGINNING OF OSCILLATION
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THE END OF OSCILLATION
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Brief results for Short Range BEC

( [cond-mat.quant-gas])

O

< Numerical Parameter follow Hulet’s parameter:
I = 200, Vv, = 37.5, Vp = 50.9, and o = 0.25.

< With this parameters, then the Healing length of the condensate
1S:
hz
HTF = 2mé?
1
< & 1s typical distance over which the order parameter of the

condensate recovers its bulk value when it is forced to vanish at a
given point by, for instance an impurity.



https://arxiv.org/abs/1807.11045

Brief results for Short Range BEC

(arXiv:1807.11045 [cond-mat.quant-gas])

O

%ur simulation produce an algebraic localization when € is smaller
then oy

| —— numerics |
S L1 I

: : : 10—3 -
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e The result in accordance with the theoretical redlctlon by Sanchez-
Palencia et al. [Phys. Rev. Lett. 98, 210401 (p 007)] : “For § < oy,

the localization of the BEC becomes algebralc and it is
only partial.”



https://arxiv.org/abs/1807.11045

Brief results for Short Range BEC

(arXiv:1807.11045 [cond-mat.quant-gas])

O

Can the AL be seen in a similar oscillation experiment?

e we perform another simulation for the same parameters
except by reducing oy, to the regime § > oy,

NUmerics
| (=~ exp(—=27,gl2]) |
104
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The result is also in accordance with the theoretical prediction by Sanchez-

Palencia et al. [Phys. Rev. Lett. 98, 210401 (2007)] : “For § > o, the
whole BEC wave function is exponentially localize.”



https://arxiv.org/abs/1807.11045

The importance of healing length

O

- Healing length is therefore a measure of the
importance of the interactions.

- In the regime £ > oy, the particle interaction is
relatively weak and the condensate will eventually
localize.

- Note: € --> oo corresponds to a noninteracting limit.




Criteria of our simulation:

» a fixed Thomas-Fermi Radius (Lyf) hence
the appearance of supersolid or superfluid

phase is depend on R.. In here, we use L¢
= 20.

» short range interaction (g) =0

» We limit the values of o, to 0.01, while §
to 0.05.




Initial state for supersolid:

» The condensate enters
supersolid state when
the value of R is
relatively large. For
example, we use : 2,6. =

0.18 +

0.16
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Initial state for superfluid

» The condensate ,
enter superfluid .| . _
state when the v / -
value of R is " |
relatively small. For | | |
example, we use : .| / |
0.01. // ~
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Results: Density Profile(Supersolid)
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Density Profile(Superfluid 1)
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Density Profile(Superfluid II)
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Exponential
Anderson
localization arise
when the

superfluid initial
state has a value
of R, between ¢
and op(op < R, <

g).



*Oscillation of Rydberg-dressed BEC can also
exhibit localization. It can be seen in the
following Graph

Algebraic o [2APENSTIE B Gaussian
Anderson
| | >
Superfluid Supersolid R

*The role of € in superfluid was taken over by Re.
¢ > op (Anderson) Rc > op (Anderson)
¢ < op (Algebraic) Rc < op (Algebraic)

*However the rule that full localization exist in € >
op regime still valid.

*Conclusion








