

Anderson Localization in an oscillating Rydberg-dressed Bose **Einstein Condensate with** disordered trap RUSSELL ONG (60541046S) CHE-HSIU HSUEH (POSTDOC) WEN-CHIN WU (SUPERVISOR) DEPARTMENT OF PHYSICS, NATIONAL TAIWAN NORMAL UNIVERSITY 2018 AMO PHYSICS SUMMER SCHOOL AT IAMS, AS

Outline

Introduction:

- Bose-Einstein Condensation
- Rydberg-dressed Bose-Einstein Condensation
- Disorder Potential
- Anderson Localization
- Numerical Approach
- Results
 - Brief results on short range BEC
 - Ground state
 - Density Profile
- Conclusion

Introduction: Bose-Einstein Condensation

 $i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t) + V(\mathbf{r})\psi(\mathbf{r},t) + U_0|\psi(\mathbf{r},t)|^2\psi(\mathbf{r},t),$

T=0: Pure Bose condensate 'Giant matter wave"

2001 Nobel Price in Physics: E. A. Cornell, C. E. Wieman (JILA) W. Ketterle, (MIT)

Introduction: Rydberg dressed BEC

A Rydberg-dressed BEC is a gas of Bosecondensed atoms whose ground state |g> is far offresonantly coupled to a highly excited Rydberg state $|e\rangle$ with a Rabi frequency Ω much less than the corresponding laser detuning Δ .

Introduction: Rydberg-dressed BEC

Non-local GPE

$$i\hbar\partial_t \Psi(\mathbf{r},t) = \left[-\frac{\hbar^2 \nabla^2}{2M} + V_{\text{ext}}(\mathbf{r}) + g |\Psi(\mathbf{r},t)|^2 + \int U\left(\mathbf{r} - \mathbf{r}'\right) |\Psi(\mathbf{r}',t)|^2 d\mathbf{r}' \right] \Psi(\mathbf{r},t),$$

where

$$U(\mathbf{r} - \mathbf{r}') = \frac{\tilde{C}_6}{R_c^6 + |\mathbf{r} - \mathbf{r}'|^6}$$

U(r-r') = long-range vdW interaction between Rydberg-dressed groundstate atoms.

- \tilde{C}_6 = Effective coupling constant
- R_{C} = Blockade radius

Introduction: Rydberg-dressed BEC

• Dimensionless nonlocal-GPE (1-dimension) Introduce the following parameter :

$$\tilde{t} = \frac{t}{t_s}, \ \tilde{z} = \frac{z}{a_o}, \ \tilde{\psi}(\tilde{z}, \tilde{t}) = a_o^{\frac{1}{2}} \psi(z, t) \ \tilde{\nu} - \frac{R_c}{a_o}$$
Together with the scaling length an $\gamma = \frac{4\pi a}{a_o}$ and $\alpha = \frac{\tilde{C}_6 m}{a_o^4 \hbar^2}$.
$$a_o = \sqrt{\frac{\hbar}{m\omega_z}}, \ t_s = \frac{1}{\omega_z}$$
We obtain :
$$i\partial_t \Psi(x, t) = \left[-\frac{1}{2}\frac{\partial^2}{\partial z^2} + \frac{1}{2}(z^2) + \gamma |\Psi(z, t)|^2 + \int \frac{\alpha}{(R_c^6 + |z - z'|^6)} |\Psi(z', t)|^2 dz'\right] \Psi(z, t)$$

Introduction: Rydberg-dressed BEC

Superfluid

Supersolid

Possessing crystalline and superfluid properties simultaneously !!

Exactly same as the short range BEC !!

Introduction: Disorder Potential

• How to produce disorder ??

speckle pattern

bichromatic lattice

Introduction: Disorder Potential

Experimental setup for the speckle potential and the imaging system for a BEC

Introduction: Disorder Potential

The disorder potential from speckle potential is defined by the auto-correlation function:

 $\langle V_{dis}(z)V_{dis}(z+\Delta z)\rangle = V_D^2\exp(-2\Delta z^2/\sigma_D^2)$

 $V_D^2 = strength \ of \ V_{dis}$ $\sigma_D = disorder \ correlation \ length$

Dramatic effects of disorder

- Although this effect is weak, it is not always can be ignored in first approximation.
- A small amount of disorder can strongly effect the properties of physical systems
- Examples:

In classical systems: Brownian motion, percolation, etc.

 In quantum systems: Quantum chaos, superconductor-insulator transition, Anderson Localization, etc.

Introduction: Anderson Localization (AL)

Anderson studied the transport of non-interacting electrons in a crystal lattice. He (1958) reported for first time that in the presence of a critical amount of random impuritie $|\psi| \sim \exp(-|\boldsymbol{r} - \boldsymbol{r}_i|/\xi)$, ion of an electron will come to a halt. This constitutes the idea of electron localization due to a destructive interference of particles (waves).

NUMERICAL APPROACH

Experimental Method (Hulet, *et al.* [Phys. Rev. A 82, 033603]

NUMERICAL APPROACH

Numerical method

• To obtain an initial wave function with a velocity v₀, we apply the Galilean transformation:

 $\psi = \varphi \exp(imv_0 z)$ and the corresponding non-local GPE for the residual wave function φ is

$$i\hbar\partial_t\varphi(z,t) = \left[\frac{1}{2}\left(\frac{\hbar}{i}\partial_z - mv_0\right)^2 + \frac{m}{2}(\omega_z^2 z^2) + V_{dis}(z) + g|\varphi(z,t)|^2 + \int \frac{\tilde{C}_6}{(R_c^6 + |z - z'|^6)}|\varphi(z',t)|^2 dz'\right]\varphi(z,t)|^2$$

THE BEGINNING OF OSCILLATION

THE END OF OSCILLATION

Brief results for Short Range BEC (arXiv:1807.11045 [cond-mat.quant-gas])

* Numerical Parameter follow Hulet's parameter: $\mu = 200$, $v_0 = 37.5$, $V_D = 50.9$, and $\sigma_D = 0.25$.

With this parameters, then the Healing length of the condensate is:

$$\mu_{TF} = \frac{\hbar^2}{2m\xi^2}$$
$$200 = \frac{1}{2\xi^2} \rightarrow \xi = 0.05$$

* ξ is typical distance over which the order parameter of the condensate recovers its bulk value when it is forced to vanish at a given point by, for instance an impurity.

Brief results for Short Range BEC (arXiv:1807.11045 [cond-mat.quant-gas])

Our simulation produce an algebraic localization when ξ is smaller then σ_D

• The result in accordance with the theoretical prediction by Sanchez-Palencia *et al.* [Phys. Rev. Lett. 98, 210401 (2007)] : "For $\xi < \sigma_p$, the localization of the BEC becomes algebraic and it is only partial."

Brief results for Short Range BEC (arXiv:1807.11045 [cond-mat.quant-gas])

Can the AL be seen in a similar oscillation experiment?

• we perform another simulation for the same parameters except by reducing σ_D to the regime $\xi > \sigma_D$.

The result is also in accordance with the theoretical prediction by Sanchez-Palencia *et al.* [Phys. Rev. Lett. 98, 210401 (2007)] : "For $\xi > \sigma_D$, the whole BEC wave function is exponentially localize."

The importance of healing length

- Healing length is therefore a measure of the importance of the interactions.
- In the regime $\xi > \sigma_{D_i}$ the particle interaction is relatively weak and the condensate will eventually localize.
- Note: $\xi \rightarrow \infty$ corresponds to a noninteracting limit.

Criteria of our simulation:

- a fixed Thomas–Fermi Radius (L_{TF}) hence the appearance of supersolid or superfluid phase is depend on R_c . In here, we use L_{TF} = 20.
- short range interaction (g) =0
- We limit the values of σ_D to 0.01, while ξ to 0.05.

Initial state for supersolid:

The condensate enters supersolid state when the value of R_C is relatively large. For example, we use : 2,6.

Initial state for superfluid

The condensate enter superfluid state when the value of R_c is relatively small. For example, we use : 0.01.

Results: Density Profile(Supersolid)

 $\gamma_{eff}(Lyapunov\ exponent) = \left(\frac{\pi}{32\xi}\right) \left(\frac{V_D}{\mu}\right)^2 \left(\frac{\sigma_D}{\xi}\right) exp[-(\sigma_D/\xi)^2]$

Density Profile(Superfluid I)

Density Profile(Superfluid II)

Exponential Anderson localization arise when the superfluid initial state has a value of R_c between ξ and $\sigma_{\rm D}(\sigma_{\rm D} < {\rm R_c} <$ ξ).

*Oscillation of Rydberg-dressed BEC can also exhibit localization. It can be seen in the following Graph

*However the rule that full localization exist in $\xi > \sigma_D$ regime still valid.

