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Introduction: 

Bose-Einstein Condensation 



 

 A Rydberg-dressed 

BEC is a gas of Bose-

condensed atoms whose 

ground state |g> is far off-

resonantly coupled to a 

highly excited Rydberg state 

|e> with a Rabi frequency Ω 

much less than the 

corresponding laser 

detuning Δ. 

 

Introduction: Rydberg dressed BEC 



Introduction: Rydberg-dressed BEC 

• Non-local GPE 

 

 

 

 

 

 
U(r-r’) = long-range vdW interaction between Rydberg-dressed ground-

state atoms. 

𝐶 6 = Effective coupling constant 

RC = Blockade radius 

 



Introduction: Rydberg-dressed BEC 

• Dimensionless nonlocal-GPE (1-dimension) 

Introduce the following parameter : 

 

 

Together with the scaling length and scaling time : 

 

 

We obtain : 

Long range interaction 

dressed coupling 



Introduction: Rydberg-dressed BEC 

• Superfluid 

 

 

Exactly same 

as the short 

range BEC !! 

 

Possessing crystalline 

and superfluid properties 

simultaneously !! 

 
View of 2-D from the top 

• Supersolid 



Introduction: Disorder 

Potential 

 How to produce disorder ?? 



Introduction: Disorder 

Potential 

Experimental setup for the speckle potential 
and the imaging system for a BEC 



Introduction: Disorder 

Potential 

The disorder potential from speckle 
potential is defined by the auto-
correlation function: 

 

 
𝑉𝐷

2 = 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑉𝑑𝑖𝑠 
𝜎𝐷 = 𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 



Dramatic effects of disorder 

 Although this effect is weak, it is not always 
can be ignored in first approximation.  

 A small amount of disorder can strongly 
effect the properties of physical systems 

 Examples: 

 In classical systems: Brownian motion, 
percolation, etc. 

 In quantum systems: Quantum chaos, 
superconductor-insulator transition, 
Anderson Localization, etc. 

  



Introduction: Anderson 
Localization (AL) 
 Anderson studied the transport of 

non-interacting electrons in a 
crystal lattice. He (1958) reported 
for first time that in the presence of 
a critical amount of random 
impurities the diffusive motion of an 
electron will come to a halt. This 
constitutes the idea of electron 
localization due to a destructive 
interference of particles (waves). 



NUMERICAL APPROACH 

Experimental Method (Hulet, et al. [Phys. Rev. A 

82, 033603]  

 



NUMERICAL APPROACH 

 

 To obtain an initial wave function with a velocity 

v0, we apply the Galilean transformation: 

 

   and the corresponding non-local GPE for the 

residual wave function φ is 

 

    Numerical method 

 



THE BEGINNING OF OSCILLATION 



THE END OF OSCILLATION 



 Numerical Parameter follow Hulet’s parameter: 

    μ = 200, v0 = 37.5, VD = 50.9, and σD = 0.25. 

 

  With this parameters, then the Healing length of the condensate 
is: 

𝜇𝑇𝐹 = 
ℏ2

2𝑚𝜉2
 

200 =  
1

2𝜉2
→ 𝜉 = 0.05 

 ξ is typical distance over which the order parameter of the 
condensate recovers its bulk value when it is forced to vanish at a 
given point by, for instance an impurity. 

 

 

 

 

 

 

 

 

 

 

Brief results for Short Range BEC 
(arXiv:1807.11045 [cond-mat.quant-gas]) 

https://arxiv.org/abs/1807.11045


Brief results for Short Range BEC 
(arXiv:1807.11045 [cond-mat.quant-gas]) 

Our simulation produce an algebraic localization when ξ is smaller 
then σD 
 
 
 
 
 
 
 
 
 
 The result in accordance with the theoretical prediction by Sanchez-

Palencia et al. [Phys. Rev. Lett. 98, 210401 (2007)] : “For ξ < σD, 
the localization of the BEC becomes algebraic and it is 
only partial.” 

https://arxiv.org/abs/1807.11045


Brief results for Short Range BEC 
(arXiv:1807.11045 [cond-mat.quant-gas]) 

Can the AL be seen in a similar oscillation experiment? 

 we perform another simulation for the same parameters 
except by reducing σD to the regime ξ  > σD. 

 

The result is also in accordance with the theoretical prediction by Sanchez-
Palencia et al. [Phys. Rev. Lett. 98, 210401 (2007)] : “For ξ > σD, the 
whole BEC wave function is exponentially localize.” 

https://arxiv.org/abs/1807.11045


The importance of healing length 

• Healing length is therefore a measure of the 
importance of the interactions. 

• In the regime ξ  > σD, the particle interaction is 
relatively weak and the condensate will eventually 
localize.  

• Note: ξ --> ∞ corresponds to a noninteracting limit. 

 

 

 

 

 

 



 a fixed Thomas-Fermi Radius (LTF) hence 
the appearance of supersolid or superfluid 
phase is depend on Rc. In here, we use LTF 
= 20. 

 short range interaction (g) =0 

 We limit the values of σD to 0.01, while ξ 
to 0.05.  

 



 The condensate enters 
supersolid state when 
the value of RC is 
relatively large. For 
example, we use : 2,6.  

 



 The condensate 
enter superfluid 
state when the 
value of RC is 
relatively small. For 
example, we use : 
0.01.  

 



 

𝛾𝑒𝑓𝑓(𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡) =  
𝜋

32𝜉

𝑉𝐷

𝜇

2
𝜎𝐷

𝜉
𝑒𝑥𝑝 −(𝜎𝐷/𝜉)2  





Exponential 
Anderson 
localization arise 
when the 
superfluid initial 
state has a value 
of Rc between ξ 
and σD(σD < Rc < 
ξ). 

 



*

*Oscillation of Rydberg-dressed BEC can also 
exhibit localization. It can be seen in the 
following Graph 

 

 

 

*The role of ξ in superfluid was taken over by RC, 

 

 

 

 

*However the rule that full localization exist in ξ > 
σD regime still valid. 

RC S u p e r f l u i d  

σD  ξ  Gaussian 
Exponential 

Anderson 
Algebraic 

Short Range Long Range 

ξ > σD (Anderson) RC > σD (Anderson) 

ξ < σD (Algebraic) RC < σD (Algebraic) 

Supersolid 






