ULTRACOLD MOLECULE

劉怡維 清華大學物理系 2015 AMO Summer School

Ultracold molecule Building Quantum

computer Superchemistry

Coherent control chemical reaction

It can boot precision measurement to another regime

WHAT IS COLD MOLECULE?

- A neutral bound system with more than one atom has a very low kinetic energy (translational, vibrational, rotational)
- K₂, KRb, Rb₂,Cs₂....

New problems in molecular system

TEMPERATURE, DENSITY AND COOLING

HEAT INCREASES INTERACTION, BUT WE ARE GOING TO COOL EVERYTHING

Heat helps chemical reaction, because: I. higher collision rate $(r=\sigma v)$

2.higher kinetic energy to penetrate chemical energy barrier

Then, why shall we go cold?

"WHAT AND WHY "ULTRACOLD COLLISION"

- $A+B \rightarrow C$:chemical reaction is inelastic collision
- "Ultracold" → S wave scattering → increase by 10³ ↔It contradicts with our experience in chemical practice.

ULTRACOLD COLLISION

Dipole-Dipole interaction

$$\mathbf{V}_{d} (\mathbf{\hat{r}}) = \frac{\mathbf{\hat{D}}_{1} \cdot \mathbf{\hat{D}}_{2} - 3 (\mathbf{\hat{D}}_{1} \cdot \mathbf{\hat{r}}) (\mathbf{\hat{D}}_{2} \cdot \mathbf{\hat{r}})}{\mathbf{r}^{3}}$$

Rank-2 Tensor: T⁽²⁾q

Wavefunction of the complex during collision: **|I,m>** The potential is: **<I,m|T⁽²⁾q|I,m> =0** =0, s-wave scattering

> dipole-dipole interaction is vanished inelastic collision is enhanced

CROSS SECTION ENHANCEMENT

Head-to-Head collision, Averaged force is zero, No potential barrier Furthermore, external field can be used to control the alignment, then the interaction of atoms

H₂ -Ar collision v.s temperature

PARTIAL WAVE COLLISION POTENTIAL BARRIER

CONTROLLING CHEMICAL REACTION USING MAGNETIC FIELD ALIGNED COLLISION

Caesium in two hyperfine levels m_F =4 and 3 as different atoms A and B

$$A_2 + B \rightarrow A + AB$$

Inelastic collision cross section is magnetic-dependent

S. Knoop, F. Ferlaino, M. Berninger, M. Mark, H. C. Naegerl, R. Grimm, J. P. D'Incao, and B. D. Esry, Phys. Rev. Lett. **104**, 053201 (2010).

EFIMOV PHYSICS

The universality of many-body physics predicated 35 years ago now is ready to be examined by ultracold molecule collision

S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schoebel, H. C. Naegerl, and R. Grimm, Nature Phys 5, 227 (2009).

The first challenge... TWO MAINSTREAMS IN COLD MOLECULE INDUSTRY

- Cool down a molecule
- Produce molecule from cold atoms

Association: Perform chemistry using very cold ingredients

How to produce molecule?

Magneto-association (Feshbach resonance) Cond. efficiency product nearly quantum degeneracy, loosely bound High nK regime 原 More deeply MOT µK regime low bound (100)

Photo-association (PA)

MAGNETO-ASSOCIATION

FESHBACH RESONANCE

-ree

Apply external field to shift energy level and tune the interaction between atoms K+U_{low}HF→U_{high}HF Free→Bound The external fields can be: magnetic,

optical, electrical

KINETIC ENERGY IS A PART OF EXCITATIION

Formation of Ultracold Rb2 and Photoassociation Process

MOT PATRAP LOSS

Relative PA Laser frequency (MHz)

The photoassociation spectrum of ⁸⁵Rb (0^{+}_{u} , v' = 49) The maximum loss rate is 40%. PA rate of 1.6 × 10⁶ molecules /sec.

J=2 transition was used to produce ${}^{85}Rb_2$ in X¹ Σ^+g at v'' = 112 - 116.

VELOCITY SELECTION USING PHOTOASSOCIATION

Non-Gaussian momentum distribution

A WEAKLY BOUND SYSTEM CAN INCREASE PA RATE

STIMULATED RAMAN ADIABATIC PASSAGE: STIRAP

 $|A \rangle = (a_1 || > + a_2 |3 \rangle) e^{i\alpha t} : \text{coupled by laser I}$ $|B \rangle = (b_1 |2 \rangle + b_2 |3 \rangle) e^{i\beta t} : \text{coupled by laser 2}$ If laser I,2 are **coherent**, then || > and |2 > are coupled into a **coherent dark state** |coherent dark state>= (r_1 || > + r_2 |2 >) e^{i\gamma t}

Population can be transfered between |1 > and |2> with no access to |3>, therefore no spontaneous decay

 $|b\rangle$

FESHBACH RESONANCE

Apply external field to shift energy level and tune the interaction between atoms K+UlowHF→UhighHF Free Bound The external fields can be: magnetic, optical, electrical

THE BEST SOLUTION SO FAR

- Feshbach resonance+STRAP (stimulated Raman adiabatic passage)
- Form a very large (R, and high ν) molecule, then remove vibrational energy by stimulation emission.
- CsRb and KRb have been successfully produced (Ni and et al, JILA,Science, 2008. Sage and et al, Yale, PRL, 2005)

Internuclear distance

Very classical, and low rate.....

A PROPOSALTO INCREASE PA RATE

• Can we drive population in all levels using one laser?

A broad band laser!

•

• Can we pump up population only, without stimulating it down?

A pulse laser!

⇒The femtosecond laser

MAXIMUM INVERSION USING Π

- Short pulse to perform π population transfer. $\tau E_0 \mu / h = \pi$
 - Problems: very large E₀ ~ 10¹²-10¹⁴ W/cm². Many subtle effects should be taken into account, such as multi-photon transition

CHIRPED FEMTOSECOND LASER

• $\tau E_0 \mu/\hbar = \pi$, a longer τ can lower required E_0

Transform-limited

• To maintain the same Δv with a long τ (>1/ Δv), we need a chirped pulse, rather than transform-limited.

Blue chirp

Red chirp

Longer pulse with the same power spectrum

- The Blue Chirped pulse can remove energy (proposed by J. Cao et al, PRL 1998)
- iust like Raman cooling (transfer to a lower kinetic energy level)

CHIRP EXPERIMENT

PRL 96, 173002 (2006)

PHYSICAL REVIEW LETTERS

week ending 5 MAY 2006

Coherent Control of Ultracold Molecule Dynamics in a Magneto-Optical Trap by Use of Chirped Femtosecond Laser Pulses

Benjamin L. Brown,^{1,2,*} Alexander J. Dicks,¹ and Ian A. Walmsley¹

¹Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom ²The Institute of Optics, University of Rochester, Rochester, New York 14627, USA (Received 13 September 2005; published 5 May 2006)

COHERENT EXCITATION

PRL 100, 233003 (2008)

PHYSICAL REVIEW LETTERS

week ending 13 JUNE 2008

Coherent Transients in the Femtosecond Photoassociation of Ultracold Molecules

W. Salzmann, T. Mullins, J. Eng, M. Albert, R. Wester, and M. Weidemüller^{*} *Physikalisches Institut, Universität Freiburg, Hermann Herder Strasse 3, D-79104 Freiburg im Breisgau, Germany*

A. Merli, S. M. Weber, F. Sauer, M. Plewicki, F. Weise, L. Wöste, and A. Lindinger[†] Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Received 11 December 2007; published 13 June 2008)

RESONANCE COUPLING ENHANCEMENT

Resonance coupling enhancement in PA

The second challenge... HOW TO DETECT MOLECULE There are difficulties

- Very small amount, low density,
- Much more complex internal energy structure (vibrational, rotational)
 Current solutions
 - Ionization mass spectrometer (REMPI) → high energy resolution, but invasive
 - Absorption image->molecule must be very well understood, and delicate

Molecule must be very well understood before detection applied. More lasers, more delicate detectors.... A more versital detection is required

MOLECULE DETECTION

I. Number density, spatial and momentum distribution can all be measured

2. Difficult to find a proper cycling transition (with a high η)

DETECT MOLECULE BY ATOM

The "invisible" molecule will come to the world through atom-molecule collision Experimental setup smilier to atom imaging, no additional laser and detector

Imaging molecule through atom

TIMING SEQUENCE

The evolution of the absorption image of rubidium atoms

holding time (ms)

New Journal of Physics The open access journal for physics New journal of Physics, accepted, (2013)

Conclusions

- A high number density of ⁸⁵Rb₂ dimers > 5.2×10¹¹ cm⁻³ has been produced and trapped in a crossed optical dipole trap. An order of magnitude higher then previous report.
- In the future, it could combine with the nondestructive atomic image technique for in-situ molecular observation and the magnetic control chemical reaction

Next Step... FOR EVEN COLDER LOWER TEMPERATURE

- Reduce background collision, longer lifetime, further cooling process.
- Move the atoms to a higher vacuum using magnetic transfer

Current Statue

Table 1. List of Ultracold Polar Molecules of Current Experimental Interest^a

polar molecule	city/country of the group	Т	comments
⁴⁰ K ⁸⁷ Rb	Boulder, CO, U.S.A.	~250 nK	GS, QR ^{1,114,119}
⁴⁰ K ⁸⁷ Rb	Boulder, CO, U.S.A.	≃300 nK	not GS but coherent population transfer, OR ¹¹⁸
⁴¹ K ⁸⁷ Rb	Tokyo, Japan	~130 µK	GS, not QR ¹²⁰
Sr ¹⁹ F	New Haven, CT, U.S.A.	~300 µK	GS, not QR ^{91,121}
⁸⁵ Rb ¹³³ Cs	New Haven, CT, U.S.A.	~100 µK	GS but not ground rotationa state, not QR ¹⁰⁷
⁷ Li ¹³³ Cs	Heidelberg, Germany	~260 µK	GS, but not coherent population transfer, not QR ¹⁰¹
⁸⁵ Rb ¹³³ Cs	New Haven, CT, U.S.A.		not GS ¹²²
³⁹ K ⁸⁵ Rb	São Paulo,	~150 µK	not GS ¹²³
²³ Na ¹³³ Cs	Rochester, NY, U.S.A.	$\sim 260 \pm 130 \ \mu K$	not GS ^{124–126}

³⁹ K ⁸⁵ Rb	Storrs, CT, U.S.A.
^{174/176} Yb ⁸⁷ Rb	Düsseldorf, Germany
⁸⁵ Rb ¹³³ Cs	Pisa, Italy
⁶ Li ⁴⁰ K	Paris, France
⁸⁵ Rb ¹³³ Cs	Taiyuan, China.
⁸⁷ Rb- ¹³³ Cs	Innsbruck, Austria
⁸⁷ Rb- ¹³³ Cs	Durham, U.K.
²³ Na- ⁴⁰ K	Cambridge, MA, U.S.A.
⁶ Li- ⁸⁵ Rb	Vancouver, Canada
⁶ Li- ^{173/174} Yb	Kyoto, Japan
⁶ Li- ¹⁷⁴ Yb	Seattle, WA, USA
⁸⁷ Rb- ¹⁷⁶ Yb	Düsseldorf, Germany
⁶ Li- ²³ Na	Cambridge, MA, U.S.A.

not GS¹²⁷ not GS¹²⁸ not GS¹²⁹ not GS¹³⁰ not GS¹³¹ AAM¹¹⁵⁻¹¹⁷ AAM^{132,133} AAM¹³⁴ AAM¹³⁵ AAM¹³⁶ AAM^{137,138} AAM¹³⁹ AAM¹⁴⁰