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Introduction to solitons

What is a soliton?

In 1834, John Scott Russell had observed an important phenomenon:
Wave of Translation.
This observation puzzled physicists for a long time.

Recreation of Russell’s 1834 observation on the Union Canal near
Edinburgh in July 1995. (Photo from Nature, 1995.)
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Introduction to solitons

Korteweg-de Vries (KdV) equation (1895):

ψt + ψxxx + 6ψψx = 0,

where ψ is the elevation of the water surface.

We start with the ansatz: ψ = φ (y) , y = x − ct.

This yields the ODE: −cφ′ + φ′′′ + 6φφ′ = 0.

Integrating this ODE and then multiplying the resulting equation by
φ′ and integrating again yields:

−c

2
φ2 +

1

2

(
φ′
)2

+ φ3 + C1φ+ C2 = 0.
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Introduction to solitons

We want a solution in the form of a localized pulse, so we need φ, φ′,
and all higher derivatives to vanish as y → ±∞. This implies
C1 = C2 = 0:

−c

2
φ2 +

1

2

(
φ′
)2

+ φ3 = 0.

The KdV equation thus admits traveling solitary waves

ψ (x , t) =
1

2
c sech2 1

2

√
c (x − ct − x0) ,

where c is the wave speed.

These solitary wave solutions correspond to the wave of translation in
Russell’s observations.
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Introduction to solitons

Solitary wave collision: A larger and faster solitary wave overtakes a
smaller and slower one.
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Introduction to solitons

Kadomtsev and Petviashvili (1970) derived a 2D-generalization of the KdV
equation, the KP equation:

(ψt + ψxxx + αψψx)x + ρ2ψyy = 0.

Crossing swells, consisting of near-cnoidal wave trains. Photo taken by
Michel Griffon from Phares des Baleines (Whale Lighthouse) France.
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Introduction to solitons

Zabusky and Kruskal (1965) numerically discovered the elastic
collision between KdV solitary waves, and then Gardner, et al. (1967)
invented the inverse scattering transform method and solved the KdV
equation analytically.

This pioneering work initiated an unprecedented burst of research
activities on nonlinear waves of integrable equations: Toda (1967),
AKNS (1973), Ablowitz and Segur (1981), Zakharov et al. (1984),
Newell (1985), (Hirota, 2004), ...

Applications in: Optics, plasma, fluids, biological systems, condensed
matter, astronomy,...
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Transmission of information in fiber optics systems

Mollenauer, Stolen, and Gordon (1980) reported the experimental
observation of solitons in optical fibers.
→ fiber-optic technology!

The message is coded in binary by representing a one as pulselike
modulation of a carrier wave.

State 1/0 is assigned to a slot if the slot is occupied/empty (on-off
keying)
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Transmission of information in fiber optics systems

Each optical pulse is positioned at the center of a time slot.

Information can be coded by the difference between successive phases
(differential phase-shift keying).
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Nonlinear Schrödinger equation in optical fibers: Derivation

Hasegawa and Tappert (1973) first derived the nonlinear Schrödinger
(NLS) equation in fiber optics, taking into account both dispersion
and nonlinearity.

Dispersion originates from the frequency dependence of the refractive
index of the fiber.

Fiber nonlinearity is due to the dependence of the refractive index on
the intensity of the optical pulse (optical Kerr effect).

n
(
ω, |E |2

)
= n0 (ω) + n2 |E |2 ,

E represents the slowly varying envelope of the electric field

ε (z , t) = E (z , t) e i(k0z−ω0t) + c .c .,
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Nonlinear Schrödinger equation in optical fibers: Derivation

Nonlinear dispersion relation:

k
(
ω, |E |2

)
=
ω

c

(
n0 (ω) + n2 |E |2

)
where c denotes the speed of light.

Taylor expansion of the wave number:

k − k0 = k ′ (ω0) (ω − ω0) +
k ′′ (ω0)

2
(ω − ω0)2 +

∂k

∂ |E |2
|E |2

Replacing k − k0 and ω − ω0 by their Fourier operator equivalents
−i∂/∂z and i∂/∂t respectively, and operating on E :

i

(
∂E

∂z
+ k ′ (ω0)

∂E

∂t

)
− k ′′ (ω0)

2

∂2E

∂t2
+ ν |E |2 E = 0
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Nonlinear Schrödinger equation in optical fibers

Hasegawa and Tappert (1973): pulse propagation in optical fibers can
be described by the nonlinear Schrödinger (NLS) equation:
i∂zψ − d2∂

2
t ψ + 2κψ |ψ|2 = 0.

ψ(t, z): electric field wave packet; z: distance along the fiber, t: time;
d2: second order dispersion coefficient; κ:Kerr nonlinearity coefficient.
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Nonlinear Schrödinger equation in optical fibers

In dimensionless form: i∂zψ + ∂2
t ψ + 2|ψ|2ψ = 0.

Soliton solution: ψβ(t, z)=ηβ
exp(iαβ+iβ(t−yβ)+i(η2

β−β
2)z)

cosh(ηβ(t−yβ−2βz))
, where

ηβ, αβ and yβ: the soliton amplitude, phase and position.

Why using optical soliton?

Stationarity: solitons propagate without any change in their
parameters and without emitting any radiation (dispersion and
nonlinearity exactly balance each other).
⇒ Ideal candidates for transmission of information in fibers!
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Soliton collisions

In an ideal fiber, soliton collisions are elastic: the amplitude,
frequency, and shape do not change as a result of the collision.

Solition collisions in the presence of perturbations: emission of
radiation, change in the soliton amplitude and group velocity,
corruption of the shape, etc.
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Effects of perturbations on optical solitions?
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Important perturbations

Important effects: Raman effect and nonlinear loss.

Delayed Raman response is a nonlinear process affecting short or
high-intensity pulses of light in optical fibers.

An important phenomenon that is associated with delayed Raman
response and nonlinear loss is energy exchange in inter-pulse collisions
(crosstalk).
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NLS with Raman effect

Pulse propagation in the presence of delayed Raman response:

i∂zψ + ∂2
t ψ + 2|ψ|2ψ = −εRψ∂t |ψ|2

The effect of delayed Raman response on a single pulse is a self
frequency shift (Mitschke and Mollenauer 86, Gordon 86)

dβ

dz
= − 8

15
εRη(z)4.

Collision induced amplitude change (Raman crosstalk, Chung and
Peleg 2005):

∆η0 = 2η0ηβsgn(β)εR
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Effects of delayed Raman response on a single collision

Collision induced frequency shift (Raman XFS, Chung and Peleg 05):

∆β
(c)
0 = −(8η2

0ηβεR)/(3|β|)

(QN and Peleg, JOSA B, 2010)
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The effects of nonlinear loss

The waveguide’s cubic loss can be a result of two-photon absorption
(TPA).

The subject TPA received attention in recent years due to the
importance of TPA in silicon nanowaveguides (Foster et al. 06,
Skryab et al. 08, Gaeta et al. 2010).

The most important effect of a fast interchannel collision in the
presence of cubic loss is a decrease in the energy of the colliding
pulses (TPA-induced crosstalk).

TPA-induced crosstalk can lead to relatively high values of the bit
error rate (BER) for sufficiently high power levels of the optical pulses
even in a two-channel system (Yoshitomo et al. 2010).
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NLS with nonlinear loss

Pulse propagation in the presence of generic nonlinear loss:

i∂zψ + ∂2
t ψ + 2|ψ|2ψ = −iε2m+1|ψ|2mψ,

where 0 ≤ ε2m+1 � 1 for m ≥ 0.

Pulse propagation in the presence of weak cubic loss:

i∂zψ + ∂2
t ψ + 2|ψ|2ψ = −iε3|ψ|2ψ.

Equation for the dynamics of its amplitude (Aceves and Moloney,
1992):

dη(s)(z)

dz
= −4

3
ε3η

(s)3(z),

where the superscript s denotes self-amplitude shift.
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The effect of cubic loss

The effect of cubic loss on a fast two-soliton collsion is an amplitude

change : ∆η
(2s)
0 =−4ε3η0ηβ/|β|.

The amplitude shift ∆η
(3s)
0 in a fast three-soliton collision is given by

a sum of the amplitude shifts due to two-soliton interaction:

∆η
(3s)
0 = −4ε3η0 (ηβ + η−β) /|β|.

(Peleg, QN, Chung, PRA 2010)
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Soliton collision in the presence of generic nonlinear loss

A 3- and 4-soliton interaction.

Q: Can we measure collision-induced amplitude shift in fast collisions of N
solitons?
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Soliton collision in the presence of generic nonlinear loss

The total contribution of n-pulse interaction to the amplitude shift in a
fast full-overlap N-soliton collision in the presence of (2m + 1)-order loss is

∆η
(mn)
j =

N∑
l1=1

N∑
l2=l1+1

· · ·
N∑

ln−1=ln−2+1

Πn−1
j ′=1

(
1− δjlj′

)
∆η

(mn)
j(l1...ln−1),

where

∆η
(mn)
j(l1...ln−1)

= −ε2m+1

m−(n−2)∑
kl1 =1

· · ·
m−sn−2∑
kln−1

=1

m!(m + 1)!η
2kl1
l1

. . . η
2kln−1

ln−1
η

2m−2sn−1+1

j

(kl1 ! . . . kln−1
!)2(m + 1− sn−1)!(m − sn−1)!

×
∫ ∞
−∞

dxj [cosh(xj )]−(2m−2sn−1+2)
∫ ∞
−∞

dz[cosh(xl1 )]−2kl1 . . . [cosh(xln−1
)]
−2kln−1 .

(Peleg, QN, Glenn, PRE 2014)
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Numerical simulations: split-step method

Numerical schemes: the finite-difference and pseudo-spectral
methods.

It is useful to write the perturbed NLS

i∂zψ + ∂2
t ψ + 2|ψ|2ψ = −iε3|ψ|2ψ

in the form
∂ψ

∂z
= (D + N)ψ,

where D: dispersion (linear part) and N: fiber nonlinearities.

Split-step Fourier method: Assuming that in propagating the optical
field over a very small distance h, the dispersive and nonlinear effects
can be assumed to act independently.
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Numerical simulations: split-step method

The linear part iψz = −ψtt was advanced efficiently via computation
of the operator exponential in frequency domain (Fast Fourier
Transform).

The nonlinear part i∂zψ = −2 |ψ|2 ψ − iε3|ψ|2ψ was advanced via a
fourth order Runge-Kutta scheme.

Schematic illustration of the symmetrized split-step Fourier method.
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Numerical simulations: split-step method

The exact solution at the propagation distance z + h:
ψ (t, z + h) = exp(h(D + N))ψ(t, z).

The approximation solution at the propagation distance z + h

ψ (t, z + h) ≈ FT−1 exp {hD (−iω)}FT [exp (hN)ψ (t, z)] .

If using the Baker-Campbell-Hausdorff formula for two
non-commutative operators A,B where A = hD,B = hN

exp(A) exp(B) = exp(A + B +
1

2
[A,B] +

1

12
[A− B, [A,B]] + ...),

the error E = |exp (h (D + N))− exp (hD) exp (hN)| is found to
result from 1

2h
2 [N,D], i.e, second order only!
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Numerical simulations

Can we find a set of real numbers (cl , c2...., ck) and (dl , d2, ..., dk)
such that

exp (h (D + N)) =
n∏

i=1

exp(cihD) exp(dihN) + o
(
hn+1

)
,

where D and N are non-commutative operators?

Using Yoshida’s result (PLA, 1990) for n = 4: d1 = d3 = x1, d2 = x0,
d4 = 0, c1 = c4 = 1/2x1, c2 = c3 = 1/2 (x0 + x1) , where
x0 = −21/3/(2− 21/3), x1 = 1/(2− 21/3).

Condition for numerical stability (Yang 2009) for SSFM4:
∆z

∆t2
<

1

π
.
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Effects of cubic loss: Numerical simulations

Collision-induced amplitude shift of the reference-channel soliton ∆η
(2s)
0

for ε3 = 0.02 (a) and amplitude shifts of the 0-channel solitons ∆η
(3s)
0 in a

three-soliton collision for ε3 = 0.02 (b):

Q: Can we find the way to control the dynamics of energy loss in many
soliton collisions in the presence of weak cubic loss?
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Amplitude dynamics at many soliton collisions
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Optical pulses in Multi-channel transmission

Multi-channel transmission: transmit many pulse sequences through
the same fiber.

In each frequency channel (pulse sequence) the pulses propagate with
the same group velocity, but the group velocity is different for
different channels.

Collisions between pulses from different channels are very frequent,
which reduce the transmission quality.
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Dynamics at many collisions and Lotka-Volterra model

Recall the amplitude change on a single two-soliton collsion:

∆η
(c)
0 =−4ε3η0ηβ/|β|.

Denote: ∆z
(1)
c = T/(2∆β)-the distance traveled by the soliton while

passing two successive time slots, gj -the net gain/loss coefficient for
the jth channel.

Adding gain/loss gj to the Eq. of change in soliton amplitude,

summing over all collisions occurring in ∆z
(1)
c :

ηj(zl−1 + ∆z
(1)
c ) = ηj(zl−1) + gjηj(zl−1)∆z

(1)
c − 4ε3

3
η3
j (zl−1)∆z

(1)
c

− 4ε3

∆β

N∑
k=1

(1− δjk)ηj(zl−1)ηk(zl−1),
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Dynamics at many collisions and Lotka-Volterra model

Going to the continuum limit:

dηj
dz

= ηj

[
gj −

4ε3

3
η2
j −

8ε3

T

N∑
k=1

(1− δjk)ηk

]
.

Look for a stationary state in the form η
(eq)
j = η > 0 for j = 1, . . . ,N

This yields the following expression for gj : gj = 4ε3
3 η

2 + 8ε3
T (N − 1)η.

The model describing the dynamics of soliton amplitudes in an
N-channel transmission line

dηj
dz

= 4ε3ηj

[
1

3
(η2 − η2

j ) +
2

T

N∑
k=1

(1− δjk)(η − ηk)

]
.

This is the Lotka-Volterra model for N competing species!!
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Dynamics at many collisions and Lotka-Volterra model:
Example in a two-channel transmission system

Consider an example in a two-channel transmission system:

dη1

dz
= 4ε3η1

[
(η2 − η2

1)/3 + 2(η − η2)/T
]
,

dη2

dz
= 4ε3η2

[
(η2 − η2

2)/3 + 2(η − η1)/T
]
.

The equivalent coupled-NLS model:

i∂zψ1+∂2
t ψ1+2|ψ1|2ψ1+4|ψ2|2ψ1 = ig1ψ1/2−iε3|ψ1|2ψ1−2iε3|ψ2|2ψ1,

i∂zψ2+∂2
t ψ2+2|ψ2|2ψ2+4|ψ1|2ψ2 = ig2ψ2/2−iε3|ψ2|2ψ2−2iε3|ψ1|2ψ2.

The gain required to maintain the equal non-zero amplitudes steady
state: g1 = g2 = 4ε3η(η/3 + 2/T )
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Dynamics at many collisions and Lotka-Volterra model

The initial condition:

ψ1(t, 0)=
J∑

j=−J

η1(0)

cosh[η1(0)(t − jT )]
,

ψ2(t, 0)=
J∑

j=−J

η2(0) exp[iβ2(t − jT + T/2)]

cosh[η2(0)(t − jT + T/2)]
,
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Dynamics at many collisions and Lotka-Volterra model

The final pulse patterns obtained by numerical integration of the
coupled-NLS with compensation of collision-induced loss
(g1 = g2 = 4ε3η(η/3 + 2/T ), left) and without compensation of
collision-induced loss (g1 = g2 = 4ε3η

2/3, right):
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Dynamics at many collisions and Lotka-Volterra model

Pulse dynamics with the IC η1(0) = η2(0) = 1 (a), and η1(0) = 0.90 and
η2(0) = 0.95 (c).
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Summary

Solitary waves from water waves to nonlinear optics: history and
general discussions.

Nonlinear effects (delayed Raman response and nonlinear loss) lead to
energy exchange in inter-pulse collisions (crosstalk): Raman effect
leads to transfer energy, while nonlinear loss leads to a decreasing of
energy.

Amplitude dynamics in an N-channel waveguide system in the
presence of weak cubic loss can be described by a Lotka-Volterra
model for N competing species.

Stability analysis of the steady states of the LV model was used to
guide the choice of physical parameters values, which leads to a
drastic enhancement in transmission stability.
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