

2015 AMO Summer School

Quantum Optics with Propagating Microwaves in Superconducting Circuits I

許耀銓 Io-Chun, Hoi

Outline

- 1. Introduction to quantum electrical circuits
- 2. Introduction to superconducting artificial atom
- 3. Quantum optics with superconducting circuits
- 4. Single atom scattering

Introduction to quantum electrical circuits

Quantum electrical circuits

Macrosopic system

Coherent s	superposition states:	Properties:		
Charge	Q	The superposition states collaps		
Flux	Φ	Drobobiliotio oborootor		
		Propapilistic character.		

Charge on a capacitor:

Current or magnetic flux in an inductor:

Conventional electrical circuits

First transistor 1947

Basic elements:

Properties: *Deterministic *No quantum mechanics *No superposition principle *No quantization of fields

Fig. from Intel

Introduced 2007 Number of transistors 820million

Fig. from Intel

Introduction to superconducting artificial atom

Superconducting circuits are like LEGOS

What's good about circuits?

• Circuits are like LEGOs!

a few elementary building blocks, gazillions of possibilities!

Basic Elements of Superconducting Circuits

NATIONAL TSING HUA UNIVERSITY Fabrication of Josephson Junction

3. first aluminum evaporation

4. oxidation

5. second aluminum evaporation 6. lift-off

Constructing linear quantum electrical circuits

$$\omega = \frac{1}{\sqrt{LC}} \sim GHz$$

Classical physics:

 $H = \frac{Q^2}{2C} + \frac{\Phi^2}{2L}$ $H = \frac{p^2}{2m} + \frac{1}{2}kx^2$

Analogy with a moving particle in a harmonic potential Quantum mechanics:

$$H = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L} \quad H = \hbar\omega(a^{\dagger}a + \frac{1}{2}) \quad \left[\hat{\Phi}, \hat{Q}\right] = i\hbar$$

M. H. Devoret, A. Wallraff, and J. M. Martinis. Superconducting qubits: A short review. http://arxiv.org/abs/cond-mat/0411174v1, 2004.

Constructing nonlinear Quantum circuit:

Artificial atom

Replace linear inductance by Josephson junction (Nonlinear inductance)

 $U = -E_J \cos \phi$

How to operate electrical circuits quantum mechanically?

Avoid broaden energy levels

Work at low temperatures

Provide reset of the circuit(Ground state)

 $k_B T << \hbar \omega << \Delta_s$ Superconducting gap energy

 $\omega / 2\pi \sim 4 - 8GHz$ T @ mK

Focus on Cooper Pair Box and Transmon!

Fig. from Michel Devoret. Linneaus summer school in quantum engineering. 2010.

J. Clarke and F. K. Wilhelm. Nature, 453:1031–1042, 2008.

G. Wendin and V. S. Shumeiko Low Temp. Phys., 33(9):724–744, 2007.

Artificial atom I: The Single-Cooper Pair Box $E_J / E_c < 1$

Decoherence of artificial atom

(Effect from the environment)

 $|1\rangle \rightarrow |0\rangle$

Phase randomization $e^{-i\omega_{01}t}$

Artificial atom II: The transmon

 $20 < E_J / E_c < 100$

Insensitive to the charge noise

Long coherence time.

Jens Koch *et al.*

Physical Review A, 76(4):042319, 2007.

Studying/Engineering the matter-light interaction

Natural atom Optical photons

Superconducting artificial atom Microwave photons

Compare with optical photon, the frequency of microwave photon is 10⁶ less.

Comparison of the toolboxes

Advantages of quantum circuit

Atom-light interaction on single photon level

- 1. Photons and "atom" interaction can be engineered
- 2. The photons can be guided by waveguides; beam alignment is not needed.
- 3. Large vacuum field $E_{0,rms} \simeq 0.2V / m$ due to small mode volume
- 4. Standard on-chip fabrication technique
- 5. Tunable transition energy of the "atom"

6. Mechanical stable

Quantum optics with superconducting circuits

Rabi oscillations

NEC: Nakamura, Pashkin, Yu, Tsai;

Atoms ⇒ Qubits 3D Cavity ⇒ 1D on-chip resonator

Wallraff et. al.; Nature 431 162 (2004) Chiorescu et. al. Nature 431, 159 (2004)

Resonant scattering

Fig: O. Astafiev, et al. 327, 840 Science (2010)

Resonant scattering in 3D space

Atom/dipole emits light

Resonant scattering in 3D space

Resonant scattering in 1D waveguide

D.E. Chang et al. Nature Physics 3, 807(2007)

Fully coherent: no transmission, perfect reflection.

Quantum circuit model

Relaxation rate into 1D transmission line, indicates the strength of coupling!

$$\Gamma_{10} \simeq \frac{\omega_{01}^2 C_c^2 Z}{4C_{\Sigma}} \qquad \qquad C_{\Sigma} = C_c + C_{JS} \qquad \qquad Z = \sqrt{\frac{L_0}{C_0}}$$

~4 cm

Transmission and reflection

$$r = \frac{\langle V_R \rangle}{\langle V_{in} \rangle} \qquad \bigvee_{R} \qquad \downarrow 1 > \qquad \downarrow 1 > \qquad \downarrow T \qquad t = \frac{\langle V_T \rangle}{\langle V_{in} \rangle}$$

Reflection coefficient

Transmission coefficient

$$r = -\frac{\Gamma_{10}}{2\gamma_{10}} \left[\frac{1 - i\delta\omega_{p} / \gamma_{10}}{1 + (\delta\omega_{p} / \gamma_{10})^{2} + \Omega_{p}^{2} / \Gamma_{10}\gamma_{10}} \right]$$

n resonance, low power

$$\left| r \left(\delta \omega_p = 0, \Omega_p \ll \gamma_{10} \right) \right| = \frac{\Gamma_{10}}{2\gamma_{10}} = \frac{1}{1 + 2\Gamma_{\varphi} / \Gamma_{10}}$$

Strong interaction limit:

$$\Gamma_{10} \gg \Gamma_{\varphi} \qquad \left| r \left(\delta \omega_p = 0, \Omega_p \ll \gamma_{10} \right) \right| \simeq 1 \quad \text{Fully coherent.}$$

Io-Chun Hoi

 $\delta \omega_{_p}$:Detuning Γ_{10} :Relaxation Γ_{φ} :Pure dephasing $\gamma_{10} = \Gamma_{10} / 2 + \Gamma_{\varphi}$

t = 1 + r

Saturation of transmission

Sample	E_J/h	E_C/h	E_J/E_C	$\omega_{10}/2\pi$	$\omega_{21}/2\pi$	$\Gamma_{10}/2\pi$	$\Gamma_{\phi}/2\pi$	Ext.
1	12.7	0.59	21.6	7.1	6.38	0.073	0.018	90%
2	10.7	0.35	31	5.13	4.74	0.041	0.001	99%

Transmission comparing to theory

Coherent vs Incoherent scattering

$$\begin{split} \Omega_p \ll \gamma_{10} \\ \left\langle V_{in} \right\rangle^2 \simeq \left\langle V_R \right\rangle^2 \simeq \left\langle V_R^2 \right\rangle \quad \left| r_{p,1} \right| \sim 1 \end{split}$$

I.-C. Hoi et al. Phys. Rev. Lett. 108, 263601(2012)

Tunable artificial atom

Emitted fields can propagate in one directions

 r_p measure the phase coherent signal.

Two-Tone Spectroscopy

Two-Tone Spectroscopy

Higher level effect

Mollow triplet

B.R. Mollow, Phys.Rev. **188**, 1969 (1969) O. Astafiev, *et al.* **327**, 840 Science (2010) I.-C. Hoi *et al.* New Journal of Physics **15**, 025011(2013)

Autler-Townes Splitting

A. A. Abdumalikov, Jr *et al.* PRL **104**, 193601 (2010)

To be continued...