Photo-creating novel light-matter interaction

Outline

- Multiferroics and classification of
- 1. Proper ferroelectrics
- 2. Improper ferroelectrics
- Why multiferroics? How to manipulate ferroelectric dipoles and magnetic spins using ultrafast lasers? What timescale?
- Indirect coupling at interface of composite multiferroics : BaSrTiO₃/La_{0.7}Sr_{0.3}MnO₃
- Direct coupling through spin spiral in RMnO₃
- Future: coherent control?

Magnetoelectric Mutiferroics

Cartoon courtesy of Khomskii, Physics 2, 20 (2009)

Classification of ferroelectrics

	Table 1 Cla	assification of ferroelectrics	Cheong et al.	, Nature 6, 13 (2007)
		Mechanism of inversion symm	etry breaking	Materials
	Proper	Covalent bonding between 3 <i>d</i> ^o t (Ti) and oxygen	ransition metal	BaTiO ₃
		Polarization of $6s^2$ lone pair of Bi	or Pb	BiMnO ₃ , BiFeO ₃ , Pb(Fe _{2/3} W _{1/3})O ₃
	Improper	Structural transition 'Geometric ferroelectrics'		K_2SeO_4 , Cs_2CdI_4 hexagonal RMnO $_3$
		Charge ordering 'Electronic ferroelectrics'		LuFe ₂ O ₄
		Magnetic ordering 'Magnetic ferroelectrics'		Orthorhombic RMnO ₃ , RMn ₂ O ₅ , CoCr ₂ O ₄
Effects of Dsyalosh	ninskii–Moriya int	retraction $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$ $0^{2^{-}}$	u^{2+} Weak ferromagne n^{3+}	etism (LaCu ₂ 0 ₄) $P \propto e_3 \times Q$
			e₃ 🚫 →	► Q Weak ferroelectricity (RMnO ₃)

Quantum Electromagnets

Possible spin superstructure with strong ME coupling :

Conical spin structure allows both uniform magnetization *M* and polarization *P*, producing a multiferroic state of purely magnetic origin.

Clamping of ferromagnetic and ferroelectric domain walls may allow electric (or magnetic) field—induced reversal of magnetization (or polarization).

Y. Tokura, Science 312, 1481 (2006)

How quick can one couple E/M?

Ultrafast light sources

Optical frequency mixing

Surface probe, domain imaging Crystal symmetry studies

Crystal symmetry studies

High harmonic generation X-UV, x rays...

Element sensitive probes, Imaging, diffractions

Imaging, diffractions

Quasi-particle excitation and detection, meta-materials

detection, meta-materials

SHG is a good probe of FE order parameter

SHG probes FE order: BSTO (FE) and strain

SHG probes FE orders: RMnO₃

Sheu et al.

Quasiparticle dynamics of RMnO₃

Cartoon courtesy of Müller, et al, NMat 8, 56 (2009) ; data of Sheu, unpublished

Magnetostric and piezoelectric effects

P. G. Radaelli, et al., Phys. Rev. Lett. 75, 4488 (1995).

G. Srinivasan, et al., Phys. Rev. B 65, 134402 (2002).

• Upon cooling across T_c, the lattice of LCMO contracts further than the regular contraction, due to ordered spins.

• Static ME coupling has been achieved in a FM/FE heterostructure of LSMO/PZT via applying an external B field.

- The lattice contraction of LSMO due to ordered spins causes a piezoelectric response along the sample normal (normal to interface).
- \bullet The largest ME effect occurs below the FM $\rm T_{\rm c.}$

LC(S)MOs are good candidates of magnetostrictive materials.

Ultrafast ME coupling at an interface

TRSHG upon photoexcitation of LCMO

Evidence of nonthermal origin

TABLE I: The various polar combinations probe coefficients $(a, b, c), \chi^{(2)}$ component (d_{15}, d_{31}, d_{33}) . Each coefficient (a, b, c) are functions, f, of (d_{15}, d_{31}, d_{33}) .

• Temperature decreases SHG intensity for all polar combinations

• d₃₁ and d₃₃ changes significantly

SHG polar changes

Unipolar and bipolar changes:

- Unipolar before t₀: residual heating from 250 kHz laser and slow heat dissipation
- Bipolar after t₀: nonthermal from strain
- No phase variation due to symmetry change

Evidence of FE change after demagnetization of LCMO

Evidence of nonlinear optical process:

- $\Delta I/I$ is one order of magnitude larger
- No polar dependence for $\Delta R/R$
- Not a result from change in optical reflectivity (R)

Evidence of magnetoelastic effect:

- Initial small thermal strain takes 7 ps to propagate across the BSTO film
- Strain relaxation through magnetostriction takes
 ~50-100 ps
- s-l relaxation channel disappear above Tc
- NO ΔI/I is observed in BSTO "OR" LCMO film

Photo-creating meta-stable states in a spiralspin multiferroic manganite

Questions to answer:

- AC field of light and what mechanism?
- Critical slowing down?

- Does the photon directly reconstruct the Mn-spin orientation due to double exchange interaction?
- Can we directly induce a phase transition?

Transient Reflectivity(T,t)

Conclusion

- Demonstration of indirect ME coupling through using ultrashort pulses to excited the FM and probe (proper) FE material composed in a heterostructure.
- Creating a metastable bc spiral through intense ultrashort pulse in the ab spiral ground state of multiferroic EYMO (improper FE).