

Quantum Phenomena in High Resolution Laser Spectroscopy

蔡錦俊 Chin-Chun Tsai 國立成功大學 物理系(光電系合聘) Department of Physics, and Department of Photonics, National Cheng-Kung University

2015/8/28

Taiwan from google map

Taiwan from google map

3

Taiwan from google map

***** Introduction

High resolution laser spectroscopy and the development of Quantum Mechanics

* Quantum Phenomena in diatomic molecule

Tunnelling, Avoided-crossing, Feno Resonance

* Quantum Phenomena in Cold Atoms

Shape Resonance, Feshbach Resonance, EIT/Decoherence, Pump Probe

***** Summary

What is Laser Spectroscopy?

When/Where does it start?

Black body radiation

The dawn of Quantum Mechanics!

Higher resolution emission spectrum of Hydrogen

A downward transition involves emission of a photon of energy:

$$E_{photon} = hv = E_2 - E_1$$

Given the expression for the energies of the hydrogen electron states:

$$h\upsilon = \frac{2\pi^2 me^4}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = -13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] eV$$

Bohr Model L = nħ

High resolution laser spectroscopy

Lamb Shift → QED

It provided a high precision verification of theoretical calculations made with the quantum theory of electrodynamics (QED).

High resolution laser spectroscopy

The quantum clock frequencies :

 v_{Al^+}/v_{Hg^+} is 1.052871833148990438(55);

strontium-87 and ytterbium-171, is 2/1,000,000,000,000,000.

Clocks based on the latter exhibit stability greater than a tenth of a second over the age of the universe.

2015/8/28

Quantum Phenomena of atom-atom interactions

Molecular Spectroscopy

Diatomic molecule

$$H_e \psi_q = (T_e + V) \psi_q = E_q(R) \psi_q$$

Some Potential curves of Na₂ and asymptotic limits

Diatomic molecule

Vibrational Mode

Eigenvalues of Harmonic Oscillator

Eigenvalues as a Rigid Rotator

Rotational Mode

Eigenfunctions $\Psi(v, J)$, *v*: *vibration quantum number*, *J* : *Rortation quantum number*

Eigenvalues : Term(v, J)

Diatomic molecule

Dunham Coefficients
$$T_{v,J} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (Y_{ij}) \left(v + \frac{1}{2} \right)^{i} [J(J+1) - \Lambda^{2}]^{j}$$

Lower terms of Dunham Coefficients (Y_{ii})

In quantum mechanics, the eigenvalues are discrete, the space is not isotropic.

Boundary conditions :

$$\psi(0) = 0 \quad \psi(L) = 0$$

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} (V_0 - E) \psi = -\frac{2m}{\hbar^2} E \psi = -k^2 \psi$$
$$\psi(x) = C_1 \sin kx + C_2 \cos kx$$
$$\psi(0) = C_2 = 0 \longrightarrow \psi(x) = C_1 \sin kx$$
$$\psi(L) = 0 \longrightarrow \psi(L) = C_1 \sin kL = 0$$

$$kL = n\pi$$

$$E_n = \left(\frac{h^2}{8mL^2}\right)n^2$$

$$\phi_n(x) = C_1 \sin\left(\frac{n\pi}{L}x\right)$$

$$\lambda = \frac{2L}{n}$$

Transitions are the Difference between Eigenvalues

GHz

200

2015/8/28

25

Avoided Crossing

Energy of dressed states :

Avoided Crossing Intermolecular Potentials

Avoided Crossing

Fano Resonance

FIG. 1. Natural line shapes for different values of q. (Reverse the scale of abscissas for negative q.)

2015/8/28

 $\frac{(q+\varepsilon)^2}{(1+\varepsilon^2)}$

Fano Resonance

Discrete : U (Na 3p + Na 4s), Energy : 42000 cm-1 ~ Continuum : Na₂⁺ + e⁻

Fig. 3. The AOTR spectrum near the series limit clearly shows the continuum (a) (and quasi-continuum (b)) Fano autoionization profiles. The intermediate level is the Na₂ 3 ${}^{1}\Sigma_{g}^{+}$ (0, 0) level. Line (c) is an experimental artifact.

Quantum Phenomena in Cold Collisions

Photoassociation Spectroscopy in Rb

Study the atoms free from spectral line broadening and shifts that arise from atomic motions and collisions

Advantages:

- I. Cold collisions are highly quantum-mechanical in nature
- II. Cold collisions are simple, involving only a few partial waves
- III. Cold collisions are sensitive to long-range interatomic forces
- IV. Long collision times can significantly affect the collision dynamics
- V. Spontaneous emission during the collision may occur to change the collision channels involved.

2015/8/28

Interatomic Separation R

A. Cold collisions in a far-off resonance trap (FORT)

B. Cold collisions under high resolution laser spectroscopy

Atom trapped in the **MOT or FORT**

Detecting the trap loss

Photoassociation of Ultra-Cold Rb Atoms

Cold collisions under **d-wave shape resonance**

How about the PA spectrum of ⁸⁷Rb+⁸⁷Rb

Vibrational level of 0_g state at 5.9 cm⁻¹ below $5^2S_{1/2}$ + $5^2p_{1/2}$

Rb₂ Ground State Potentials at Long Range

2015/8/28

Feshbach Resonance

Cold collisions

FIG. 2. ⁸⁵Rb₂ photoassociation spectra for excitation from lower (f = 2 + f = 2) hyperfine state collisions to a single excited vibrational level, at a laser intensity of 20 W/cm². Upper curve: spectrum at zero magnetic field. Lower curve: spectrum at a magnetic field of 195 G. Each of the zero field components splits into 10 or 15 distinct components due to Zeeman splitting of the ground state atoms; calculated splittings are shown by the vertical dashed marks. The successive peaks in the lower spectrum correspond mainly to J = 0, and (from left) $M_F = -4, -3, -2, -1, 0, 1$, and 2.

Feshbach Resonance

Quantum Interference in Cold Cs

Electromagnetically Induced Transparency EIT

2015/8/28

High-Precision and High-Resolution Laser Spectroscopy on Magneto-Optical Trap of Cesium Atoms

Atom number 4x10⁹, Cloud size 5 mm, Density 5x10¹⁰/cm³

Atom temperature (Time of flight) : 100 μ K

Experimental Setup

Visible Cs MOT

Visible Cs MOT : Probe laser transition $|6p \ ^{2}P_{3/2}\rangle \rightarrow |10d \ ^{2}D_{5/2}\rangle$ 563.6nm

Atom number $\sim 10^8$ Temperature $\sim 200 \mu K$

Data Acquisition by External Scan

2015/8/28

Atomic Transitions

$$\left|6s^{2}S_{1/2}, F=5\right\rangle \rightarrow \left|6p^{2}P_{3/2}, F=4\right\rangle \rightarrow \left|9d^{2}D_{5/2}, F\right\rangle$$

2015/8/28

Numerical Simulation

 γ_2 =5.2MHz, γ_3 =2.5MHz, wc=3MHz, wp=1MHz, Δc =-10MHz Ωc =20MHz

Experimental Setup

Quantum Decoherence

Decay fluorescence

2015/8/28

Suppression

Suppression & Recovery

Suppression & Recovery

Power dependence

Power dependence

Linewidth vs. coupling Rabi frequency

Laser linewidth is a de-coherence source.

Quantum Interference in Cold Cs

Stimulated Raman Adiabatic Passage (STIRAP)

Reviews of Modern Physics, Vol. 70, No. 3, July 1998

2015/8/28

2015/8/28

Contour of the relative populations as functions of Ω_S and delay time for (a) $\Omega p=1.6$ MHz and (b) $\Omega p=9.5$ MHz,

Minimized STDEV simulation: $\Omega p = 9.5$ MHz and $\Omega s = 10.0$ MHz. The thick line is another simulation: $\Omega p = 3.1$ MHz and $\Omega s = 11.5$ MHz. 2015/8/28

X Quantum Phenomena in diatomic molecule **Tunnelling, Avoided-crossing, Feno Resonance**

Quantum Phenomena in Cold Atoms Shape Resonance, Feshbach Resonance, EIT/Decoherence, STIRAP

