A/\Lahuratuire Kastler Brossel
-Physigue quantigue et applications

Lectures on
Quantum Optics and
Quantum Information




Quantum Information Science

Over the last 20 years, QIS has developed driven by the prospect to
exploit capabilities from the quantum realm to accomplish tasks
difficult or even impossible with traditional methods of information
processing.

Quantum communication, the art of transferring a quantum state
from one place to another. It led for instance to the demonstration of
quantum cryptography, an absolutely secure way to transmit
information, and even to commercially available quantum key
distribution systems and a network deployed in a metropolitan area.

Quantum computation, where bits are replaced by qubits. It
detains the promise of computing power beyond the capabilities of
any classical computer. For instance, P. Shor showed that a quantum
computer can factorize a large number efficiently, i.e. in a polynomial
time, while it is an exponentially difficult problem for classical
algorithms. Beyond its fundamental interest for understanding
quantum complexity, it is of practical importance as the difficulty of
factoring numbers is the basis of encryption systems, such as the RSA
scheme.

A third direction is quantum metrology and enhanced sensing.

M.A. Nielsen, L. Chuang, Quantum computation and Quantum Information,
Cambridge Univ. Press

S.M. Barnett, Quantum Information, Oxford Univ. Press

H.A. Bachor, T.C. Ralph, A guide to experiments in quantum optics, Wiley-VCH




Content of the lectures

Lecture 1 Introduction to quantum noise,
squeezed light and entanglement generation

Quantization of light, Continuous-variable,
Homodyne detection, Gaussian states,
Optical parametric oscillators,
Entanglement, Teleportation

Lecture 2 Quantum state engineering

Conditional preparation, Non-Gaussian
states, Schrodinger cat states, Hybrid
approaches, Quantum detectors, POVM
and detector tomography
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Lecture 1

e Light quantization, discrete vs
continuous representation

e How to generate squeezed light ?

e Quantum correlations and
entanglement in the CV regime




What Are We Speaking About?

e In the limit of unity
o 19 quantum efficiency and no
electric noise, the measured

Light ’}/"*— . O\ fluctuations are only due to
T — the noise of the light:

+ = Range : . .
Detector bl e r Y it can be classical noise
IO e (e.g. 1/f noise) or quantum
5 Q7 noise (e.g. shot noise).

In this lecture, we will focus on
information carried by travelling light fields
and we wil be interested in the
guantum mechanical nature of light.




Quantization of the Electromagnetic Field

We are not going to detail the quantization procedure for the free Introduction to

electromagnetic field, but give here the basic steps and analogies, (lg /I’; TNITCUS M

which enable to introduce useful notations.
More details can be found for instance in “Introduction to QO”.

e Maxwell equations in vacuum (no charges, no currents)

Vx&=—-—=B VxB=5-¢£ il
ot c20t ‘
V.E = V.B =
L 168% 5
e Give the Helmholtz equation for the E field: A& — ?@5 =0

e Classical Plane wave decomposition (I: 2 polarizations, k: wave vector)

2
oy 1 . kT 3
E(Tt) = (2’}"{')3/2 EZ /‘/‘/‘E‘u—é(t) 7€ d’k
=1

e By injecting this decomposition into the Helmholtz equation :
82
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Quantization of the Electromagnetic Field

2
 For each wave vector: 6_ . 22 (4 —
6t2ELk(t) +k°c°E, (t) =0

This equation is similar to the one describing the evolution of ¢ 1 _
harmonic oscillator with frequency w, which can be described a(t) PT1tq jut

by a vector a, function of p (position) and g (momentum).

e By analogy, we introduce an operator &33;; and define a field operator : B

We can also define the quadrature operators: Lk Qe bk

-t s . o
O Y4Etep  4p—a4 Where 4 and @ a, % can be identified to
P p= 4G =7 the creation and annihilation operators for
; 2 L,k
V2 iv/2 harmonic oscillators

e By considering Fourier-limited wavepackets, it can be shown finally for one mode
(one dimension quantized harmonic oscillator) :

Total number " . R o

#0f photons . a + al e a—al

S /\/ 1 o At L \@ i\/§
H=hw(ala+- [G,G]ZI AA
2 [p'.l q] =1




Two Possible Descriptions

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)




Discrete Variables

Discrete degree of freedom
number of photons N=at*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

Quantum bits or “qu-bits” have been
introduced in this description. 2, 2
e.g. presence/absence of a photon in one a‘()) T /6|1> o+ 7 =1
mode, orthogonal polarization modes (H/V),...




Discrete Variables .

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field .
Modes are quantized harmonic oscillators (measured by photon counting)
2 possible observables for the description: )
Energy or Electric field Continuous degree of freedom
quadratures P and Q

(fluctuations measured by
homodyning, photodiodes)

Quantum bits or “qu-bits” have been
introduced in this description. 2, 2
e.g. presence/absence of a photon in one G:‘O) T ﬁ|1> a+ 47 =1
mode, orthogonal polarization modes (H/V),...

For a pure state: p = |l/)> (W

For a mixed state: p = ZPH%)WH p =) (W] = % ( } i )
k

Re{p)

Written in the Fock basis, the density matrix is very illustrative for discrete systems.




Quantum Continuous-Variables

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

Why using them?

- Perfect detectors, high
rates/bandwidth
- Deterministic operations
- Non-gaussian states/cluster
states with many potential
applications in Q. computing
and communication




Quantum Continuous-Variables

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

E(t) = Eycos(wt + ¢)
= Pjcoswt 4 Q) 4 sinwt

Why using them?

- Perfect detectors, high
rates/bandwidth
- Deterministic operations
- Non-gaussian states/cluster
states with many potential
applications in Q. computing
and communication

» P




Quantum Continuous-Variables

Quantization of the electromagnetic field
Modes are quantized harmonic oscillators
2 possible observables for the description:

Energy or Electric field

Discrete degree of freedom
number of photons N=a+*a
(measured by photon counting)

9 [PaQ}: 2

Qa

= V(P)V(Q) 21

Fano factor F

Fp = (§P%) =V (P)

» P

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

Why using them?

- Perfect detectors, high
rates/bandwidth
- Deterministic operations
- Non-gaussian states/cluster
states with many potential
applications in Q. computing
and communication




Quantum Continuous-Variables

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

9 [PaQ}: 2

— V(P) V(Q) > 1 Why using them?
- Perfect detectors, high
One can have : rates/bandwidth
V(P)<1 - Deterministic operations
- - Non-gaussian states/cluster
V(Q) > 1 states with many potential
“Noise applications in Q. computing
-, and communication
> P reduction

or "Squeezing”




Quantum Continuous-Variables

+

Quantization of the electromagnetic field

Modes are quantized harmonic oscillators

2 possible observables for the description:
Energy or Electric field

Discrete degree of freedom
number of photons N=a+*a
(measured by photon counting)

A

A

Vacuum
N —

Number state

A

A

-

\
\\l

f Coherent state / Intensity squeezing

Squeezed Vacuum

Y

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

Why using them?

- Perfect detectors, high
rates/bandwidth
- Deterministic operations
- Non-gaussian states/cluster
states with many potential
applications in Q. computing
and communication




Quantum Continuous-Variables

Discrete degree of freedom
number of photons N=a+*a

Quantization of the electromagnetic field (measured by photon counting)

Modes are quantized harmonic oscillators
2 possible observables for the description:
Energy or Electric field

Continuous degree of freedom
quadratures P and Q
(fluctuations measured by
homodyning, photodiodes)

t t =

Coherent state Intensity squeezing Perfect detectors, high
: f - Perfect detectors, hig

A A Gaussian rates/bandwidth

Why using them?

Vacuum Squeezed Vacuum tates - Determin_istic operations
— (,’ \ . - Non-gaussian states/cluster

states with many potential
| applications in Q. computing
Number state Non-Gaussian and communication

states
|




Lecture 1

e Light quantization, discrete vs
continuous representation

e How to generate squeezed light ?

e Quantum correlations and
entanglement in the CV regime




THE tool : Homodyne detection

— A _
fk TEYA | Local oscillator
L 4
i |

50/50

Quantum state
"""" :'“““"“ Photocurrent
a - subtraction
(ll 0 Local oscillator \ >
Adjustable Phase I




Measuring Optical Continuous-Variables

Afl w Local oscillator
!
50/5
Quantum state "
-------------------- otocurrent
subtraction
a! 0 Local oscillator

« Mean Value and variance for 1)) ® |ae’®) :
(N-) = afplale’® + ae™ ) = a{ylig|y)
V(N-) = o®V(By) + (¥laTaly) V(N-) =~ a®V (py)




Measuring Optical Continuous-Variables

|

Local oscillator

- Overall Efficiency -
Photodiode efficiency n

Interference Visibility V

-------------------- Photocurrent

_ 2
subtraction Niot=M V
(ex: 0.99 x 0.992=0.97)

(I[ 0 Local oscillator

e Annihilation operators of the mixed modes: g = @+ A G —Gio

e After subtraction, the resulting photocurrent operator is:

« Mean Value and variance for 1)) ® |ae’®) :
(N-) = afplale’® + ae™ ) = a{ylig|y)
V(N-) = o®V(By) + (¥laTaly) V(N-) =~ a®V (py)




Measuring Optical Continuous-

THE tool : Homodyne detection

4 ALocaI oscillator *
f - Overall Efficiency -
50/50 Photodiode efficiency n
Quantum state Interference Visibility V
"""""""""" Photocurrent V2
& subtraction Ntot=M-
a (ex: 0.99 x 0.992=0.97)
lo Local oscillator \ >
Adjustable Phase I

What we obtain ? Example of a squeezed state
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The Wigner Function

For continuous-variable, the density matrix is useful, but not easy to interpret.
Another tool : the Wigner function, which is a quasi-probability distribution.

1

W(p,q) = 2,J‘T/Bi"’q(zw —v/2|plp+v/2)dv

Marginal distributions for P(Pg) (what is measured with homodyne detection) are
obtained by projection of the Wigner function on the axis defined by Py , i.e. by
integrating it over the orthogonal direction.

P(pg) = / W (p cos ¢ — gsin ¢, psin ¢ + pcos ¢)dq

Importantly, one can also obtain p and W from the marginal distributions : this is the
goal of tomography. It requires to use reconstruction algorithm, such as Radon
transform or Maximume-likelihood algorithm. [see A.Lvovsky, RMP 81, 299 (2009)]
Wigner function
and some | {; i.

projections for a
squeezed state

From A. Ourjoumtsev PhD Thesis




The Wigner function is a quasi-probability

Wigner function of  gieriby ition: it can take negative values.

a single-photon

Hudson-Piquet Theorem for pure state:

Gaussian state < Positive Wigner function
Non-Gaussian state <Negative Wigner function

(From A. Ourjoumtsev PhD Thesis)




The Wigner function is a quasi-probability

Wigner function of  gieriby ition: it can take negative values.

a single-photon

Hudson-Piquet Theorem for pure state:

Gaussian state < Positive Wigner function
Non-Gaussian state <Negative Wigner function

(From A. Ourjoumtsev PhD Thesis)

Negativity at the origin, W(0,0)<0 : something special ?

Quantumness, or non-classicality, can manifest by many ways. It is usually considered
that the negativity of the Wigner is a very strong signature of non-classicality.

Parity operator for the number of photon: Pn _— (—1)”

1

W(0,0) is related to a odd number of photons W(O: 0) — ;(P@




Squeezed Vacuum
(or other states!)

Homodyne detection

A

50/50

=
X

Photocurrent
subtraction

Local oscillator
Adjustable Phase

By reconstruction algorithm (Radon, MaxLik)

Density matrix

‘F-i{xa'} (u.a.)

T

Wigner function

Photocurrent vs phase
Give the marginal distributions

Variance, Fourier Transform

Noise Power (dB)
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-
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Frequency {MHz)
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Interlude: CV for Atomic Ensembles

CoIIective spin operators

N
i=

N 2-level atoms N
N fictitious 1/2 spins described Individual spins aligned along 0z (.J,) = —
by a collective spin 2

Heisenberg inequality

N N




Interlude: CV for Atomic Ensembles

CoIIective spin operators

N
ZJ.I' }g’.- z_jy Jz= ijl
=1

N 2-level atoms N
N fictitious 1/2 spins described Individual spins aligned along 0z (.J,) = —
by a collective spin

Heisenberg inequality

LV, N

Uncorrelated spins Correlated spins

B BB yidy By il A

Spin coherent state Spin squeezed state
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e Light quantization, discrete vs
continuous representation

e How to generate squeezed light ?

e Quantum correlations and
entanglement in the CV regime




How to Generate Squeezed Light ?

S|gnal
Squeeze_d light generation requires the use 71 wy = w1 + Wy
of non-linear effects. We focus here on the W,
case of degenerate parametric interaction in M, kU = k’l + k‘z
non-linear % crystals. idiér

‘Degenerate’: signal and idler
identical (frequency, polarization)




How to Generate Squeezed Light ?

—
S|gnal
Squeeze_d light generation requires the use Z Wy = Wi + wo
of non-linear effects. We focus here on the
case of degenerate parametric interaction in / k‘U = kl + kz
non-linear % crystals. , Idler

‘Degenerate’: signal and idler
identical (frequency, polarization)

e Hamiltonian associated to this process (down conversion and up conversion):

H = ihy (asa@ alfﬂ) \zhx( 22 a;f?)
Degenerate case

e It leads to the temporal evolution ag(t) = cosh(xt)as(0) — sinh(xt)a l( 0)

~out 6—27‘ i
e This gives for the quadratures after the interaction : Ps = Ps
~out 21r A1

s — € (g r=XT




Pulsed Parametric Amplification

Requires intense pulses.
Squeezing increases with
pump power.

Femtosecond

laser \

SHG

2

detection

Pulsed homodyne measurements of femtosecond squeezed pulses generated by
single-pass parametric deamplification

Jérime Wenger, Hosa Tualle-Brouri and Philippe Grangier
Loeboratoire Charles Fabry de Ulnsiiet 'Opligue, CNRE UMR 8501, F-51408 Ovsay, France.

A new scheme 1s deseribed for pulsed squeezed light generation usng femtosecond pulses paramet-
rically deamplified through a spgle pass inoa thin (100 gm) potassiom niobate KNBOy erystal, with
a significant deamplification of about -3dB. The quantum nowse of each individual pulse is registered
in the time domain using a single-shot homodyne detection operated with femtosecond pulses and
the best squeesed quadrature variance was messured to be 187 dB below the shot poise level. Such
a scheme provides the basic ressource for time-resolved quantum communication protocols.

Opt. Lett. 29, 1267 (2004)

Parametric gain
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CW Parametric Amplification in a Cavit%

Another solution: use a cw less (Output coupler R,T)
intense pump laser and a cavity A M, A o
which is resonant on the common F ¥
signal-idler mode and enhances the
non-linear interaction.

in"s out
‘Optical Parametric Oscillator’, which Ag As
can oscillate above a given - R=1 for all the mirrors, but the output coupler R
threshold. - Losses L (absorption, interfaces,..)

- Pump power normalized to the threshold : o
— Q. : cavity bandwidth




CW Parametric Amplification in a Cavit%

Another solution: use a cw less (Output coupler R,T)
intense pump laser and a cavity A M, A o
which is resonant on the common = e
signal-idler mode and enhances the
non-linear interaction. in out
‘Optical Parametric Oscillator’, which Ag As

can oscillate above a given - R=1 for all the mirrors, but the output coupler R

threshold. - Losses L (absorption, interfaces,..)
- Pump power normalized to the threshold : o

— Q. : cavity bandwidth

i T 40 10

Sx, () = 1+ - o7

$ E 084
Tl do 0.7 0,

S - ﬂ —_— 1 - 2 —_— _-*

h '1"'5.::( } T +Ll:1+ﬂ':]2+4% UD,B_

& -_;__D,S—_

Maximum squeezing : at threshold, at @ o
zero frequency. ol

0,14

0.0

Ex. : T=10%, L=1% -->V=1-10/11~0.09 (~10dB)




CW Parametric Amplification in a Cavit%

Observation of squeezed states with strong photon number oscillations

a Moritz Mehmet,'? Henning Vahlbruch,' Nico Lastzka,'! Karsten Danzmann,' and Roman Schnabel!
) _ ' Max-Planck-Institut fiir Gravitationsphysik (Albert-Einstein-Institut) and Institut fiir Gravitationsphysik,
Laser preparation Squeezed_state Detection _ Leibniz Universitéit Hannover, Callinstr. 38, 30167 Hannover, Germany
generation ‘Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitéit Hannover,
Laser Phase shifter Welfenparien 1, 30167 Hannover, Germany
. a
Squeezed  Local oscillator Phys. Rev. A 81, 013814 (2010)
YaACLILIMm
\ 50¢50 FO
By, TR ST by
@ X 16 Wmm“%
= SA 14
PD R _ 12} Anti-squeezed N\\m
w10
¥ = g
DBS FC532 Pump 5 6
@ : Wacuum
)
2 0
s .2
2 4 A |
£ 5
2 gl Squeezed 'I‘“'" l'l‘
: '1% q M”’m T
T e |
MgO:LiNbO3- 14 |
crystal 6 8 10 20 40 60 80100
Frequency [MHz]

Ceramic
insulation

Copper plate

Peltier element

Ceramic base

FI(G. 3: Wigner function of the squeezed vacuum state produced

See also works from Paris, Copenhaguen, Tokyo, Naples, Canberra,...




The GEO 600 squeezed light source

Henning Vahlbruch, Alexander Khalaidovski, Nico Lastzka, Christian
Graf, Karsten Danzmann, and Roman Schnabel

Institue fir Gravitationsphysik of Leibnie UniversitAt Hannover and Max-lanck-Institut fiis
Gravitatkonsphysik (Alben-Einstein-Instiian), Callinsie, 38, 30167 Hannover, Germany

Class.Quant.Grav.27:084027 (2010)

Flgure 3. Photograph of the CECHDN sepseeeed Tight asneree
135em x 113em. The three Nd:YAG Lasers nre located on the upper left, at the bottom left
the seporesing rrssmaior nnd on the hottom right the homeadyne detertor with s eovering b
Is shawen, The total welght of the complete system is approximitely 150 ke,

T brenelbewrd elimensions wne

A Quantum Laser Pointer

Nicolas Treps,’2* Nicolai Grosse," Warwick P. Bowen,” Claude
Fabre,2 Hans-A. Bachor," Ping Koy Lam’

Science 301, 940 (2003)
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Effect of Losses on Squeezed Light

What is
Intensity loss : 1-n A, thenoise
~ after the
Can be modelled by a beam : loss?

splitter with reflectivity R=1-n :
and transmitivity T= n. : >
Vacuum fluctuations are A A’

entering by the empty port.




Effect of Losses on Squeezed Light

What is
Intensity loss : 1-n A, thenoise
~ after the
Can be modelled by a beam : loss?

splitter with reflectivity R=1-n :
and transmitivity T= n. : >
Vacuum fluctuations are A A’

entering by the empty port.

e The beam-splitter gives: A’ = VnA+ /1 =14
« We linearize the fluctuations : A = A+ dA and Ay = 04

and obtain for a quadrature P: A" = \/ndA + /1 —nd Ay 0Py = /0Py + \/1 — 0Py,
¢ \We calculate the noise variance :

0\5@ =n@+(l—n)@+\/ﬁvl —n(cF/R.é’IA/D)

=V’ =V =1 (shot) =0 (uncorrelated)

V' goes to 1 (shot) for strong losses (n=0), ok! V’ — 1 V + (1 _ 77)




Effect of Losses on Squeezed Light

What is
Intensity loss : 1-n A, thenoise Some illlustrative values.....
~ after the
Can be modelled by a beam : loss? V=0.1 (10dB squeezing)

splitter with reflectivity R=1-n : 10% loss give:
and transmitivity T= n. : > V'=0.2 (7dB squeezing)
Vacuum fluctuations are A A’

entering by the em ort. Squeezing is very
g by Pty p sensitive to losses!

« The beam-splitter gives: A" = \/nA + /1 — 94
e We linearize the fluctuations: A = A +3JA and Ay = 0Ay

and obtain for a quadrature P: A" = \/ndA + /1 —nd Ay 0Py = /0Py + \/1 — 0Py,
¢ \We calculate the noise variance :

0\5@ =n@+(l—n)@+\/ﬁvl —77(5/13%.5’{0)

=V’ =V =1 (shot) =0 (uncorrelated)

/
V' goes to 1 (shot) for strong losses (n=0), ok! V' = 7 V + (1 _ 77)
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Classical Correlations of Li

A simple example : intensity « correlations » is easy to obtain....

F i’l’l. 1 Linear Correlation coefficient

<5P1(5P2> Fin —1
Cio = m) Cpp=
i F1F5 . Fin + 1

5 9 For a very noisy incident beam, the
Fy = (0P%) =V (P) correlation goes to 1!




Classical Correlations of Light Beams

Fm 1

Normalized linear correlation coefficient

O PP Fip — 1
Cro = L1PY) ¢y = 10
Vv F1 Fo Fin+1
. 5 0 For a very noisy incident beam, the
Fin = (0P°) =V (P) correlation goes to 1 !
Question : How to define the quantum character of
correlations between two beams in the CV regime?
Involving 1 quadrature Involving 2 quadratures
Gemellity Inseparability
QND Correlation EPR Correlations




« One Quadrature » Crit

Two beams, one quadature

Q Q

A Field 1 A Field 2

» P » P

- Difference between the fluctuations
P_.=P — P
- Noise on this difference

_V(P) V(P - Ry
G= 2 9

i —

G=1 for two independent lasers (also
for the previous case with noisy beam)

- Conditional Varian2ce V(P,|P,)
G
Ve =2G — ¥al <]

G <Ve.<2G




« One Quadrature » Criteria

Q Q

A Field 1 A

Field 2

> P > P

- Difference between the fluctuations

P_.=P — P
- Noise on this difference
_V(P-) V(P - PBP)
G=—g = 2

G=1 for two independent lasers (also
for the previous case with noisy beam)

- Conditional Varian2ce V(P,|P,)
G
Ve =2G — = <]

G < Ve<2G

Gemellity : G<1
The correlation cannot be described by a
semi-classical model involving classical
electromagnetic fields having classical
fluctuations.
Ex.: noise on the intensity difference below
the shot noise level (Twin Beams)

QND Correlation : V <1
The information extracted from the
measurement on one field provides a QND
measurement of the other.
Ex.: in the perfect case, intensity
measurement on field 1 gives without
uncertainty the value for field 2




Quantum Intensity Correlations

Optical Cavity Signal H
and Idler V
/
®, o y o o ®
(g\)“ .......
’z‘(’): o o ® o
CW Pump NL Crystal x®

Type-II Phase matching  Nojse on the intensity
difference ?

J. Laurat et al., Phys. Rev. Lett 91, 213601 (2003); Optics Lett. 30, 1177 (2005); arXiv:quant-ph/0510063




Quantum Intensity Correlations

Optical Cavity Signal H
and Idler V
/
®, o y o o ®
(g\)“ .......
’z‘(’): o o ® o
CW Pump NL Crystal x®

Type-II Phase matching  Nojse on the intensity
difference ?
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J. Laurat et al., Phys. Rev. Lett 91, 213601 (2003); Optics Lett. 30, 1177 (2005); arXiv:quant-ph/0510063
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« Two Quadratures » Crit

A double correlation : « EPR Paradox »

51,=5l,
5([),:'8([)2

’ [PL— P,Q1+ Q2] =0
= Gp=0 GQ:U

Phys. Rev. 47, 777 (1935)




« Two Quadratures » Criteria

51,=51,
5([),='8(P2

" P —P,Q1+ @3] =0
= Gp=0 GQ:—O

Phys. Rev. 47, 777 (1935)

Inseparabilty (Duan) : <1

The correlation arises from from a system which
can be described only by a non-separable state.

Gp+G
P‘: Q .1
EPR Correlation (Reid) :
Apparent violation of the Heisenberg inequality for

the quadatures of beam 1 through measurement
performed on beam 2

V(PA|PR)V(Q4lQB) <1

Yy =




« Two Quadratures » Criteria,

51,=51,
5([),='8(P2

" P —P,Q1+ @3] =0
= Gp=0 GQ:—O

Phys. Rev. 47, 777 (1935)

Inseparabilty (Duan) : <1
The correlation arises from from a system which
can be described only by a non-separable state.

Gp+G
P‘: Q .1
EPR Correlation (Reid) :
Apparent violation of the Heisenberg inequality for # ,

the quadatures of beam 1 through measurement 00 02 “:ﬂ_mm;f 08 L0
performed on beam 2

V(PA|PR)V(Q4lQB) <1

Yy =

—
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How to Generate CV Entan

Entanglement and Squeezing : a change in basis

-Using 2 type-I OPO and
mixing the two squeezed
N light on BS
- Using 1 type II OPO
~\\| -




How to Generate CV Entanglement ?

Canberra, Caltech,
v Copenhaguen, Tokyo,...

e
-Using 2 type-I OPO and

mixing the two squeezed

light on BS

- Using 1 type II OPO

Variance (dB)
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parabilité £

J. Laurat et al., Phys. Rev. A 71, 022313 (2005)

Separability > = 0.33 £ 0.02 < 1
EPR: Vc,.Vc, = 0.42 £ 0.05 <1
Teleportation Fidelity = 0.75




How to Generate CV Enta

With one squeezed beam?

| A .
x

Squeezing s<1
Antisqueezing
as>1




How to Generate CV Entanglement ?

x 1
> = 5(1 -+ S) Always entangled...
-_i{ﬂ 4.(s.as
Vcl-VCQ — ( )

14+ s+ as+ (s.as)

Squeezing s<1
Antisqueezing
as>1

Sometimes EPR entangled : needs good
squeezing and importantly good purity




How to Generate CV Entanglement ?

With one squeezed beam?

X 1
>, = 5(1 -+ S) Always entangled...

Vcl-VCQ —

4.(s.as)
14+ s+ as+ (s.as)

Squeezing s<1
Antisqueezing
as>1

Sometimes EPR entangled : needs good
squeezing and importantly good purity

Normalized Quadrature Variance [dB]

Einstein-Podolsky-Rosen Entanglement in a Vacuum-Class Two-Mode Squeezed State
an — Tobias Eberle,’?* Vitus Hindchen,' Jorg Duhme,”® Torsten Franz,® Reinhard F. Werner,* and Roman Schnabel® *
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12 | . anti-aqueszed *Centre for Quantum Enginesring and Space- Time Research - QUEST,
10 + — ) Leibniz Universitidt Hannover, Welfengarten I, 50167 Hannover, Germany
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Quantum Teleportation

1- Measurements

P=P,—-P
Q=Qin+ Q1

2- Transmission (classical channel)

3- Modulations

-0
Pout:P2+P:Pin+(P}451/)
Qout = Q2 + Q = Qin + (Q4+3)

—0

fx
Classical information
i ¢
1

First teleporation of a coherent states with Fidelity above 0.5 (1/2=classical strategy)
A. Furusawa et al., Unconditional quantum teleportation, Science 282, 706 (1998)

First teleportation of a cat states
N. Lee et al., Teleportation of non-classical wave-packets of light, Science 332, 330 (2011)




Multimode Entanglement : Cluster States

CV Cluster states
a9

%—?—%

9

a9 99 a

S S
S

Quadrature correlations verifying:

ﬁa_ 2 'fb —0

beN,

PHYSICAL REVIEW LETTERS N

PRL 57, 110500 (2006) 15 SE 008

Universal Quantum Computation with Continuous-Variahle Cluster States

Nicolas €. Menicuced,'** Peter van Loock,” Mile Gu,' Christian Weedbrook,'
Timothy C. Ralph,' and Michael A. Nielsen'

" Department of Pirpsics, The University of (weensiand, Brishane, Queenslond 4072, Austmlia
Department af Physics, Princeton University, Princeton, New Jersey 04544, USA
"Natiowal Institete of Infermarics, 2-1-2 Hi hi, Chivoda-ku, Tokyo 1018430, Japan
(Received M) May 2006: published 13 September J006)

Wi describe o generalization of the clesier-staie model of guentom compatation 10 continuous-varishle
sysbems, along with 2 proposal for an optical implementation using squeezed-light sources, linear optics,
and homodyne detection. For umivenal quanium computstion, & nonlinesr element bs required. This can be
satisfbed by adding 1o the soolbox any singhe-mode non-Gaussisn messurement, while the indiisl clasier
wnte sl remaing Gasssisn. Homodyne detection alone waffices o perform an arbitrary muoltimode
Ganssian trensformation via the cluster state. 'We also propose an oxperimesnt to demonstraie clusser-hased
error redhaction when implementing Gaussian operations.




Multimode Entanglement : Cluster St:

CV Cluster states
PRL 97, 110501 {2006) PHYSICAL REYIEW LETTERS I.'iil;"km?:n}

&—*—%—,‘ ‘—‘ -‘_v‘_-‘ Universal Quantum Computation with Cantinuous-Variable Cluster States

Nicolas C. Menicueel,"™* Peter van Loock.” Mile Gu,' Christian Weedbrook,
Timothy C. Ralph,' and Michael A. Nielsen'

" Department of Pirpsics, The University of (weensiand, Brishane, Queenslond 4072, Austmlia

".qurmml- afl Ph; IICI Fr meedon Lin rrfﬂru Prmc efovs, New Jersry A5, L'SA
hi, Chivoda-ku, Tokyo 107-B430, fapan

| %_ % *_ 3 "Nariomal Jrurine of frd , 2-1-2 Mitorsme
(Received ) \1-|._ 2004 published 13 Seplember J006)
‘_%_‘ i Wi describe o generalization of the clesier-staie model of guentom compatation 10 continuous-varishle
sysbems, along with 2 proposal for an optical implementation using squeezed-light sources, linear optics,
and homodyne detection, Fer umiveral quantum conpuistian. @ nonlines element i required. This can be

satisfbed by adding 1o the soolbox any singhe-mode non-Gaussisn messurement, while the indiisl clasier
wnte sl remaing Gasssisn. Homodyne detection alone waffices o perform an arbitrary muoltimode

Ganssian trensformation via the cluster state. 'We also propose an oxperimesnt to demonstraie clusser-hased
error redhaction when implementing Gaussian operations.

Quadrature correlations verifying:

(ﬁa_ 2 —f?b)—’o

beN,

How to build them7 With squeezers and beam splitters

With other phase combinations:
1. °¢°
OO ©

Experimental generation of four-modes CV cluster states, Phys. Rev. A 78, 012301 (2008)

M. Yukawa et al.,




A last Level of Correlations : Non-localit%

Violation of a Bell Inequality Non-Gaussian states with
The multiple correlations cannot be described by a Negative Wigner functions
local hidden variables A strongly active field:

Schrodinger cat states,

Fiel ith : it Positi Wiane : - .
ields with Gaussian statistics (Positive Wigner CV qubit, distillation

function) : can always be mapped into

stochastic equations for fluctuating fields, Hybrid Schemes
which constitute the local « hidden » variables Requires non-Gaussian
accounting for all the observed quantities... measurements or non-Gaussian

Fressources




A last Level of Correlations : Non-localit%

Violation of a Bell Inequality Non-Gaussian states with
The multiple correlations cannot be described by a Negative Wigner functions
local hidden variables A strongly active field:

Schrodinger cat states,

Fields with Gaussian statistics (Positive Wigne S
| ! - istics (Positive Wigner CV qubit, distillation

function) : can always be mapped into

stochastic equations for fluctuating fields, Hybrid Schemes
which constitute the local « hidden » variables Requires non-Gaussian
accounting for all the observed quantities... measurements or non-Gaussian
ressources
Alice ) Proposal for a Loophole-Free Bell Test Using Homodyne Detection

/ R. Garcia-Patrén,' J. Fiurddek,'” N.J. Cerf,' J. Wenger,” R. Tualle-Brouri,” and Ph. Grangier®
Lo, ') le

7 Z_ ', QUIC' Ecole Polvtechnigue, CP 163, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
‘Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomoue, Czech Republic
BS, *Laboraroire Charles Fabry de 'Institue d'Optigue, CNRS UMR 8501, F-81403 Orsay, France
Sophie PD, §~ m (Received 26 March 2004; published 23 September 2004)
SHG F
ol = res fic
LASER e Requires efficiency>95%, 6dB
R R | | >
T BSs | Single-photon subtractions squeezu”_ng_, _hlgh purity of the
B&m S _ initial state...
i A And gives at most 5=2.05
Bob T

R. Garcia-Patron et al., Phys. Rev. Lett. 93, 130409 (2004); and many other proposals since then...




Summary

e Continuous-variable regime

. a+ r'r-Jf a— H-T
P= T~ Q=7
V2 iv?2

— —

e Squezed light generation by
parametric amplification

e Quantum correlations : 5 levels

Gaussian: Twins, QND,EPR
Non-Gaussian : Bell-type
Trend: Hybrid schemes (next lecture!)




