Time-Resolved Detection of Photon-Surface-Plasmon Coupling at the Single Quanta Level

Chih-Sung Chuu

Department of Physics, National Tsing Hua University Center for Quantum Technology

Outline

- Motivation
- Scientific goals
- Experimental setup
- Results
- Conclusion and Outlook

Light-Matter Interaction

Light-Matter Interaction with Plasmonics

Hong-Ou-Mandel Interference

Transmission of Entanglement

Generation of Entanglement

Chen and Chuu, Opt. Express (in press)

1. W state

$$|W\rangle = \frac{1}{\sqrt{3}} \left(|e_1, g_2, g_3\rangle + |g_1, e_2, g_3\rangle + |g_1, g_2, e_3\rangle \right)$$

2. W-like state

$$|W'\rangle = \frac{1}{\sqrt{6}}(2|e_1, g_2, g_3\rangle + |g_1, e_2, g_3\rangle + |g_1, g_2, e_3\rangle)$$

3. Death and revival of entanglement

Time-Resolved Detection and Manipulation

• Formation of single optical plasmons

-- Temporal wavepacket (Glauber correlation function)

 $G^{(2)}(\tau) = \langle a_i^{\dagger}(t+\tau)a_s^{\dagger}(t)a_s(t)a_i(t+\tau) \rangle$

-- Nonclassical correlation (Cauchy-Schwarz inequality)

 $C(\tau) = g_{i,r}^2(\tau) / g_{i,i}(0) g_{r,r}(0) \leq 1$

-- Coherence (Hong-Ou-Mandel Interference)

- Manipulation of single optical plasmons
 - -- Wavefunction shaping

Experimental Setup

SPDC-Based Photon Pair Source

Single mode without external filters

Appl. Phys. Lett. 101, 051108 (2012)

Plasmonic System

Polarization-resolved transmission

Non-Classical Correlation (CS Inequality)

Cheng et. al, Phys. Rev. A 102, 033724 (2020)

Temporal Wavepacket

 $g^{(2)}(0) = p_{123}/p_{12}p_{13}$

Single-photon quality

Incident photon	Reemitted photon
0.019 ± 0.003	0.015 ± 0.003
0.019 ± 0.003	0.009 ± 0.003

Cheng et. al, Phys. Rev. A 102, 033724 (2020)

Conversion Process: Coherent or Incoherent?

Cheng et. al, Phys. Rev. A 102, 033724 (2020)

Conclusion and Outlook

- A technique of time-resolved detection is developed to study the formation and manipulation of single optical plasmons.
- The technique can also be applied to the plasmonic waveguides.
- Direct detection of single optical plasmons is possible with on-chip superconducting detectors.

Zwiller group (KTH)