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Outline of the talk

• Introduction to randomness 

• Our scheme for quantum randomness generation

• Our method for certifying quantum randomness

• Experimental realization & results
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Background: Why randomness is important? 

GamblingSimulation Sampling Cryptography

 Random numbers are generated through a process or device called 

the random number generator (RNG).

RNG random numbers ቐ

unpredictable

uniformly distributed

private

Huge amount of uniform randomness High-quality, certified, private randomness 
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Background: Why randomness is important? 

GamblingSimulation Sampling Cryptography

 Random numbers are generated through a process or device called 

the random number generator (RNG).

RNG random numbers ቐ

unpredictable

uniformly distributed

private

Huge amount of uniform randomness High-quality, certified, private randomness 

E.g.

A classical 

random number 

generator

Classical process is deterministic  No perfect random numbers

Quantum measure is probabilistic  Ideal random numbers as needed
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Background: Quantum random number generators

Source

𝜌𝑋

Measure

𝑀𝑌

𝑋 𝑌

Certifiable random outputs

A general QRNG

Uncertified random inputs

 Main idea: exploits the probabilistic nature of quantum measurements 

to generate genuine random numbers.



5Copyright 2020 NTT CORPORATION

Background: Quantum random number generators

Source

𝜌𝑋

Measure

𝑀𝑌

𝑋 𝑌

Certifiable random outputs

A general QRNG

 Device-dependent QRNG

 Semi-device-(in)dependent QRNG

 Device-independent QRNG

Depending on the amount of characterization on the quantum devices:

s
e
c
u
rity

p
e
rfo

rm
a
n
c
e

Uncertified random inputs

 Main idea: exploits the probabilistic nature of quantum measurements 

to generate genuine random numbers.
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Background: Quantum random number generators

Device-dependent QRNG

 simple --- a small device 

 high performance --- randomness rate 

~250 Kbps (embedded in a smartphone)

 require fully characterized device ---

impossible to achieve in practice, so

security is problematic

Device-independent QRNG

Alice

Bob

Entanglement Source

Loophole-free Bell-test setup @ NIST-Boulder

 high security --- no need to characterize the 

device

 complicated --- a large-scale device

 high latency (time consuming) --- a few minutes   

or hours delay before generating randomness 

 low performance --- randomness rate ~100 bps

QRNG chip @ ID Quantique
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Background: Semi-device-independent QRNG

Source-independent QRNG Measurement-device-independent QRNG

Source

𝜌𝑋

Measure

𝑀𝑌

Uncharacterized Characterized

Source

𝜌𝑋

Measure

𝑀𝑌

Cao et al., PRX 6, 011020 (2016)

Marangon et al., PRL118, 060503 (2017)

Chaturvedi et al., EPL 112, 30003 (2015)

Cao et al., NJP 17, 125011 (2015)

 Semi-device-independent --- the device is partially characterized.

 Advantage --- can achieve a balance between performance and security.  

Previous works 

Characterized Uncharacterized
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Background: Semi-device-independent QRNG

Source-independent QRNG Measurement-device-independent QRNG

Source

𝜌𝑋

Measure

𝑀𝑌

Uncharacterized Characterized

Source

𝜌𝑋

Measure

𝑀𝑌

 Current problems: reliability and latency 

Cao et al., PRX 6, 011020 (2016)

Marangon et al., PRL118, 060503 (2017)

Chaturvedi et al., EPL 112, 30003 (2015)

Cao et al., NJP 17, 125011 (2015)

Questions: 

 Increase reliability: can we address imperfections in both source & measure?

 Reduce latency: can we achieve low-latency randomness generation?

 Semi-device-independent --- the device is partially characterized.

 Advantage --- can achieve a balance between performance and security.  

Previous works 

Characterized Uncharacterized
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Overview of our achievements 

Source

𝜌𝑋

Measure

𝑀𝑌

Both Source and Measure are partially characterized.

 Studied a new semi-device-independent QRNG scheme

polarized single-photon

random bit

• a single-photon source is not easily accessible. 

• a particular quantum state is hard to prepare.

• a particular measurement is hard to perform.

0

1

polarization
rotator

polarizing 

beam splitter

In practice, 

1

0

An 

example

Ideal case: 
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Overview of our achievements 

Source

𝜌𝑋

Measure

𝑀𝑌

Both Source and Measure are partially characterized.

 Studied a new semi-device-independent QRNG scheme

 Developed efficient methods for randomness certification in the above scenario

 Realized a simple low-latency real-time high-security QRNG
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A simple QRNG scheme

𝑋

𝑍

Ideal measure

in the single-photon space

Imbalance

𝜏 = (𝑃𝑋 − 𝑃𝑍)/2
is exactly known 

mutually 

unbiased

Photon number 𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

Ideal source

single-photon

source
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A simple QRNG scheme with imperfections

𝑋

𝑍

𝑋′

𝑍′

2𝛿

1) Misalignment angle

𝛿 is bounded 

such that 𝛿 ≤ Δ!

Ideal measure

in the single-photon space

Practical measure

in the single-photon space

Imbalance

𝜏 = (𝑃𝑋 − 𝑃𝑍)/2
is exactly known 

2) Imbalance is bounded

𝜏lb≤ 𝜏 ≤ 𝜏ub.

mutually 

unbiased

*Adversarial manipulations 

are allowed.  

Photon number 𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

Ideal source

single-photon

source
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A simple QRNG scheme with imperfections

𝑋

𝑍

𝑋′

𝑍′

2𝛿

1) Misalignment angle

𝛿 is bounded 

such that 𝛿 ≤ Δ!

Ideal measure

in the single-photon space

Practical measure

in the single-photon space

Imbalance

𝜏 = (𝑃𝑋 − 𝑃𝑍)/2
is exactly known 

2) Imbalance is bounded

𝜏lb≤ 𝜏 ≤ 𝜏ub.

mutually 

unbiased

*Adversarial manipulations 

are allowed.  

Photon number 𝑛 Photon number 𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

Ideal source

single-photon

source

weak coherent light with 𝑛 = 0.5

weak thermal light with 𝑛 = 0.5

Practical 

source
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A simple QRNG scheme with imperfections

𝑋

𝑍

𝑋′

𝑍′

2𝛿

1) Misalignment angle

𝛿 is bounded 

such that 𝛿 ≤ Δ!

Ideal measure

in the single-photon space

Practical measure

in the single-photon space

Imbalance

𝜏 = (𝑃𝑋 − 𝑃𝑍)/2
is exactly known 

2) Imbalance is bounded

𝜏lb≤ 𝜏 ≤ 𝜏ub.

mutually 

unbiased

*Adversarial manipulations 

are allowed.  

Photon number 𝑛 Photon number 𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

P
ro

b
a
b
ili

ty
 𝑝
𝑛

Ideal source

single-photon

source

weak coherent light with 𝑛 = 0.5

weak thermal light with 𝑛 = 0.5

1) Photon-number dist. is bounded such that 𝑝𝑛=1 ≥ 𝑝1,lb or  Τ𝑝𝑛=1
𝑝𝑛≥1 ≥ 𝑝1,lb.

2) Measurements are block-diagonal 𝑴 = 𝑴𝒏=𝟏⊕𝑴𝒏≠𝟏.

Practical 

source



15Copyright 2020 NTT CORPORATION

Our method: Quantification of randomness

Entropy 
Generator

𝐙 = (𝑍1, 𝑍2, … , 𝑍𝑁) 𝐂 = (𝐶1, 𝐶2, … , 𝐶𝑁)

Quantum 
Adversary E

𝜌𝐂𝐙E = σ𝐜𝐳 ۧ|𝐜𝐳 |𝐜𝐳ۦ ⊗ 𝜌E(𝐜𝐳)Joint state: 

• Guessing probability: 𝑃guess 𝐂 𝐙E 𝜌

• Easily accessible measure of uniform randomness:   

• Flexible measure of uniform randomness:   

𝐻min
𝜀 𝐂 𝐙E 𝜌 = sup𝜌′{𝐻min 𝐂 𝐙E 𝜌′ , 𝑃(ρ, ρ

′) ≤ ε}

M. Tomamichel, R. Colbeck, and R. Renner, IEEE Trans. Inf. Theory 56, 4674 (2010)

* The possible joint state is in a 

quantum model for the experiment. 

R. K ሷonig, R. Renner, and C. Schaffner, IEEE Trans. Inf. Theory 55, 4337 (2009)

𝐻min 𝐂 𝐙E 𝜌 = −log2[𝑃guess 𝐂 𝐙E 𝜌]
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Our method: Quantification of randomness

Entropy 
Generator

𝐙 = (𝑍1, 𝑍2, … , 𝑍𝑁) 𝐂 = (𝐶1, 𝐶2, … , 𝐶𝑁)

Quantum 
Adversary E

𝜌𝐂𝐙E = σ𝐜𝐳 ۧ|𝐜𝐳 |𝐜𝐳ۦ ⊗ 𝜌E(𝐜𝐳)Joint state: 

• Guessing probability: 𝑃guess 𝐂 𝐙E 𝜌

• Easily accessible measure of uniform randomness:   

• Flexible measure of uniform randomness:   

𝐻min
𝜀 𝐂 𝐙E 𝜌 = sup𝜌′{𝐻min 𝐂 𝐙E 𝜌′ , 𝑃(ρ, ρ

′) ≤ ε}

* The possible joint state is in a 

quantum model for the experiment. 

𝐻min 𝐂 𝐙E 𝜌 = −log2[𝑃guess 𝐂 𝐙E 𝜌]

Goal: Lower-bound smooth conditional min-entropy 𝐻min
𝜀 𝐂|𝐙E
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Our method: Quantification of randomness

Entropy 
Generator

𝐙 = (𝑍1, 𝑍2, … , 𝑍𝑁) 𝐂 = (𝐶1, 𝐶2, … , 𝐶𝑁)

Classical 
Adversary E

𝜇𝐂𝐙E = σ𝐜𝐳 ۧ|𝐜𝐳 |𝐜𝐳ۦ ⊗ 𝜇E(𝐜𝐳)

• Guessing probability: 𝑃guess 𝐂 𝐙E 𝜇

• Easily accessible measure of uniform randomness:   

• Flexible measure of uniform randomness:   

𝐻min
𝜀 𝐂 𝐙E 𝜇 = sup𝜇′{𝐻min 𝐂 𝐙E 𝜇′ , 𝑇𝑉(𝜇, 𝜇

′) ≤ ε}

* The possible joint state is in a 

classical model for the experiment. 

𝐻min 𝐂 𝐙E 𝜇 = −log2[𝑃guess 𝐂 𝐙E 𝜇]

Goal: Lower-bound smooth conditional min-entropy 𝐻min
𝜀 𝐂|𝐙E

Joint state: 

(in the presence of classical side information)
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Our method: Concepts involved

 Quantum model Q 𝐂𝐙 --- the set of all possible joint states 𝜌𝐂𝐙E at the end 

of the experiment. 

 Quantum estimation factor (QEF) --- a function 𝐹q(𝐂𝐙) satisfying a set of 

constraints imposed by each possible 𝜌𝐂𝐙E ∈ Q 𝐂𝐙 . 

Y. Z., H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020)

Y. Z., L. K. Shalm et al., Phys. Rev. Lett. 124, 010505 (2020)

(in the general approach of quantum probability estimation)
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Our method: Concepts involved

 Quantum model Q 𝐂𝐙 --- the set of all possible joint states 𝜌𝐂𝐙E at the end 

of the experiment. 

 Quantum estimation factor (QEF) --- a function 𝐹q(𝐂𝐙) satisfying a set of 

constraints imposed by each possible 𝜌𝐂𝐙E ∈ Q 𝐂𝐙 . 

Under the quantum Markov-chain conditions (natural for time-ordered trials)

𝐂<𝑖 ↔ (𝐙<𝑖 , E) ↔ 𝑍𝑖 , ∀ 𝑖, [IID assumption is not required]

we need only to construct                                  

 Model Q 𝐶𝑍 --- the set of all possible joint states 𝜌𝐶𝑍E at the end of a trial.

 Corresponding QEF --- a function 𝐹q(𝐶𝑍) satisfying a set of constraints

imposed by each possible 𝜌𝐶𝑍E ∈ Q 𝐶𝑍 . 

Y. Z., H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020)

Y. Z., L. K. Shalm et al., Phys. Rev. Lett. 124, 010505 (2020)

(in the general approach of quantum probability estimation)
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Our method: Concepts involved

 Classical model C 𝐂𝐙 --- the set of all possible joint states 𝜇𝐂𝐙E at the end 

of the experiment. 

 Probability estimation factor (PEF) --- a function 𝐹c(𝐂𝐙) satisfying a set of 

constraints imposed by each possible 𝜇𝐂𝐙E ∈ C 𝐂𝐙 . 

Under the Markov-chain conditions (natural for time-ordered trials)

𝐂<𝑖 ↔ (𝐙<𝑖 , E) ↔ 𝑍𝑖 , ∀ 𝑖, [IID assumption is not required]

we need only to construct                                  

 Model C 𝐶𝑍 --- the set of all possible joint states 𝜇𝐶𝑍E at the end of a trial.

 Corresponding PEF --- a function 𝐹c(𝐶𝑍) satisfying a set of constraints

imposed by each possible 𝜇𝐶𝑍E ∈ C 𝐶𝑍 . 

Y. Z., E. Knill, and P. Bierhorst, Phys. Rev. A 98, 040304(R) (2018)

E. Knill, Y. Z., and P. Bierhorst, Phys. Rev. Research 2, 033465 (2020)

(in the general approach of probability estimation)
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Our method: Main theorem

• Quantum model Q𝑖 𝐶𝑖𝑍𝑖 and QEF 𝐹q,𝑖 𝐶𝑖𝑍𝑖 ≥ 0 with power 𝛽q > 0 for each 

trial 𝑖. 

QEF Def.    ∀𝜌𝐶𝑖𝑍𝑖E ∈ Q𝑖 𝐶𝑖𝑍𝑖 , 𝐹q,𝑖 𝐶𝑖𝑍𝑖 ෠𝑅1+𝛽q 𝜌E(𝐶𝑖𝑍𝑖) 𝜌E(𝑍𝑖) ≤ 1.

* Models and QEFs for different trials can be different.

* ෠𝑅1+𝛽q 𝜌E(𝐶𝑖𝑍𝑖) 𝜌E(𝑍𝑖) is the sandwiched Rényi power of order (1 + 𝛽q).   

(of quantum probability estimation)
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Our method: Main theorem

• Quantum model Q𝑖 𝐶𝑖𝑍𝑖 and QEF 𝐹q,𝑖 𝐶𝑖𝑍𝑖 ≥ 0 with power 𝛽q > 0 for each 

trial 𝑖. 

QEF Def.    ∀𝜌𝐶𝑖𝑍𝑖E ∈ Q𝑖 𝐶𝑖𝑍𝑖 , 𝐹q,𝑖 𝐶𝑖𝑍𝑖 ෠𝑅1+𝛽q 𝜌E(𝐶𝑖𝑍𝑖) 𝜌E(𝑍𝑖) ≤ 1.

* Models and QEFs for different trials can be different.

* ෠𝑅1+𝛽q 𝜌E(𝐶𝑖𝑍𝑖) 𝜌E(𝑍𝑖) is the sandwiched Rényi power of order (1 + 𝛽q).   

• The success event ≜ 𝐜𝐳:ς𝑖=1
𝑁 𝐹q,𝑖(𝑐𝑖𝑧𝑖) ≥ 𝑡min .

• κ --- a desired lower bound of the success probability. 

Theorem: For each possible state 𝜌𝐂𝐙E,  either the success probability satisfies

Prob𝜌𝐂𝐙E Φ ≤ κ,

or conditional on success

𝐻min
𝜀 𝐂 𝐙E 𝜌

𝐂𝐙E|Φ
≥

1

𝛽q
log 𝑡min +

1

𝛽q
log ε2

2
+

1+𝛽q

𝛽q
log κ .

(of quantum probability estimation)
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Our method: Main theorem

• Classical model C𝑖 𝐶𝑖𝑍𝑖 and PEF 𝐹c,𝑖 𝐶𝑖𝑍𝑖 ≥ 0 with power 𝛽c > 0 for each 

trial 𝑖. 

PEF Def.      ∀𝜇𝐶𝑖𝑍𝑖E ∈ C𝑖 𝐶𝑖𝑍𝑖 , 𝐹c,𝑖 𝐶𝑖𝑍𝑖 [𝜇E(𝐶𝑖|𝑍𝑖)]
𝛽c ≤ 1.

* Models and PEFs for different trials can be different.

• The success event ≜ 𝐜𝐳:ς𝑖=1
𝑁 𝐹c,𝑖(𝑐𝑖𝑧𝑖) ≥ 𝑡min .

• κ --- a desired lower bound of the success probability. 

(of probability estimation)

Theorem: For each possible state 𝜇𝐂𝐙E,  either the success probability satisfies

Prob𝜇𝐂𝐙E Φ ≤ κ,

or conditional on success

𝐻min
𝜀 𝐂 𝐙E 𝜇

𝐂𝐙E|Φ
≥

1

𝛽c
log 𝑡min +

1

𝛽c
log 𝜀 +

1+𝛽c

𝛽c
log κ .
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Our method: for the scenario considered

Measurements considered：

𝑀𝑋=
𝑀𝑋, 𝑛=1 0

0 𝑀𝑋, 𝑛≠1
, 𝑀𝑧=

𝑀𝑧, 𝑛=1 0

0 𝑀𝑧, 𝑛≠1
,

1. 𝑀𝑋, 𝑛≠1 and 𝑀𝑧, 𝑛≠1 are arbitrary

2. 𝑀𝑋, 𝑛=1 and 𝑀𝑧, 𝑛=1 are qubit 

measurements with 𝛿 ≤ Δ. 

3. 𝑀𝑋 and 𝑀𝑍 are randomly selected with bounded probabilities.  

States considered： ρ=
ρ𝑛=1 0
0 ρ𝑛≠1

, where Tr(ρ𝑛=1) ≥ 𝑝1,lb.

Physical model
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Our method: for the scenario considered

Measurements considered：

𝑀𝑋=
𝑀𝑋, 𝑛=1 0

0 𝑀𝑋, 𝑛≠1
, 𝑀𝑧=

𝑀𝑧, 𝑛=1 0

0 𝑀𝑧, 𝑛≠1
,

1. 𝑀𝑋, 𝑛≠1 and 𝑀𝑧, 𝑛≠1 are arbitrary

2. 𝑀𝑋, 𝑛=1 and 𝑀𝑧, 𝑛=1 are qubit 

measurements with 𝛿 ≤ Δ. 

3. 𝑀𝑋 and 𝑀𝑍 are randomly selected with bounded probabilities.  

States considered： ρ=
ρ𝑛=1 0
0 ρ𝑛≠1

, where Tr(ρ𝑛=1) ≥ 𝑝1,lb.

Physical model

Quantum model Q

& classical model C

Convex polytope PQ ⊇ Q

& convex polytope PC⊇ C

Construct the best QEF and PEF

by convex optimization 
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Single pulse

(+ vacuum pulse)

Energy basis

Time basis

SSPD1

SSPD2

t1t2t3

 A laser pulse is inputted into a Mach–Zehnder interferometer (MZI), and outputs are 

detected by two superconducting single-photon detectors (SSPDs).

 Two orthogonal measurement bases: energy basis & time basis.

1. Energy basis: random (0: click at SSPD1, or 1: click at SSPD2)

2. Time basis:   t1 (almost)     t3 (rare event)

1bit delay 

MZI

Input: imperfect 

& unknown

quantum state

Output: time-tagged 

detector clicks

 Advantage --- easily integrated onto a chip.

 Our QRNG is semi-device-independent --- allows imperfections in both source & measure.

The MZI and SSPDs can be imperfect.

Our QRNG: Experimental realization
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Our QRNG: Experimental realization

Our QRNG allows:

 Imperfect source --- weak optical pulse rather than single-photon source.

 Imperfect basis choice --- a basis is selected with an inexact probability.

 Imperfect measure --- measurements are misaligned.   

Average photon number 

per pulse: ~0.0035

Splitting ratio of BS1: 53.8:46.2 

Splitting ratio of BS2: 46.9:53.1

Quantum efficiency of SSPD: ~ 60%       

(dark count < 40 Hz)
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Result 1: Low-latency real-time high-security QRNG

No. of certifiable random bits (kbits)

N
o
. 

o
f 

in
s
ta

n
c
e
s

N
o
. 

o
f 

in
s
ta

n
c
e
s

experimental results experimental results

success threshold (set beforehand) success threshold (set beforehand)

classical adversary

(an adversary who  

cannot access a 

quantum memory) 

quantum adversary

(an adversary who

has a quantum 

memory)

 Each instance generates 8192 (or 2 × 8192) random bits against quantum (or classical) 

adversary with insecurity 2−64 ≈ 5.4 × 10−20  high security.

Insecurity --- Adversary’s ability to distinguish the generated random bits (real case) 

from the perfectly random bits (ideal case). 

 Each instance takes 0.1 s runtime (which includes the latency 0.047 s) + 0.02 s (or 0.04

s) extraction time  real time & low latency.
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Result 2: Trade-off between quantity & quality 

Insecurity level

N
o
. 

o
f 

c
e
rt

if
ia

b
le

 r
a
n
d
o
m

 b
it
s

(k
b
it
s
)

classical adversary

quantum adversary

Expected number of random bits certifiable from the 

measurement outcomes observed in every 0.1 s runtime.

 Depending on the specific application, we choose the insecurity level beforehand.

E.g.,   

Our method is efficient 
 the amount of 

certifiable randomness 

doesn’t change much 

with the insecurity level. 

18%

change

Simulation requires low security --- recommended insecurity level 10−5. 

Cryptography requires high security --- recommended insecurity level 10−20.
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Result 3: Classical vs Quantum adversary

Simulation:

Binary-outcome 

measurements 

such that 𝑀1 =0 

and 𝑀2 =1 − 𝑑.

Depolarization noise 𝑑
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Ideal case, classical adversary

Ideal case, quantum adversary

Practical case, classical adversary

Practical case, quantum adversary

Ideal case: 1-qubit + two mutually unbiased measurements

Practical case: 95% 1-qubit + two misaligned measurements

(misalignment angle is 5°)

Clear demonstration of the reduction of the rate w.r.t. quantum adversaries 

as compared to that w.r.t. classical adversaries. 
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Comparison with other start-of-art works

QRNG Type Latency Rate
(over a long run)

Insecurity

ID Quantique
PRX, 2014

arXiv:2011.14129

device

dependent
unreported

4.90 Mbps**
(the best 

QRNG chip）

uncertified

USTC
Nature, 2018

device

independent
13 hours 181 bps 10−5

quantum adversary

NIST
PRL, 2020

device

independent
5 min 55 bps 5.4 × 10−20

quantum adversary

Tsinghua Uvi.
PRX 2016

semi device

independent
unreported 5 Kbps 1.8 × 10−15

quantum adversary

Our work
semi device

independent
47 ms 153 Kbps 5.4 × 10−20

quantum adversary

Fig. 3 of USTC, Nature 2018

R
a
n
d
o
m

 b
it
s
 (

M
b
)

Time (h)
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* Latency and Rate are two different measures of QRNG performance.

* Previous works focus on the study of the rate of a QRNG; however, 

the latency is more relevant for practical applications.   

** The rate 250 Kbps in the video presentation is the typical entropy rate of the smallest QRNG chip 

embedded in a smartphone.
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Significance of this work and future developments

Summary

• Simple & reliable QRNG scheme even with 

imperfections in both source and measure.

• New & efficient method for randomness 

certification, which is extendable to QKD.

• Low-latency real-time high-security QRNG.

• Advantage of quantum adversary.
No. of certifiable random bits (kbits)
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quantum 
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experimental results experimental results

Outlook

• Reduce the size of our QRNG  Integration into mobile phones.

• Build a continuously-operating, high-security and high-speed quantum randomness beacon 

[ongoing efforts at NIST@USA and USTC@China].
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Thank you for your attention!


