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Introduction
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Einstein-Podolsky-Rosen Paradox
 Is Quantum Mechanics complete?
 Local hidden variable
 Entanglement

 A pair of particles: measure on one particle would instantaneously affect the 
state of the other

Spooky 
action at a 
distance
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Bell’s inequality
 Quantum mechanics vs. local hidden variable

From wikipedia.org
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Entanglement
 Nonlocal correlation

 Why quantum mechanics is “weird”
 Stronger than any classical correlation

 Unpredictable results
 Any prediction will be served as hidden variables

 Not for instantaneous communication 
 Compatible with causality (relatives)

 Useful in many information processing tasks
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Observations of entanglement
 Ann. New York Acad. Sci. 48, 219 (1946)

 “Two quanta emitted in the annihilation of a positron-
electron pair, with zero relative angular momentum, 
are polarized at right angles to each other”

 Phys. Rev. 77, 136 (1950)
 Early observation of quantum entanglement
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Entanglement witness
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Definition of bipartite entangled state
 Separable state

𝜎𝜎𝐴𝐴𝐴𝐴 = �
𝑖𝑖

𝑝𝑝𝑖𝑖𝜌𝜌𝐴𝐴𝑖𝑖 ⊗ 𝜌𝜌𝐵𝐵𝑖𝑖

 Forms a convex set
 Entangled state

 Cannot be written in the above form

 E.g., Φ+ = 1
2

( 00 + |11⟩)

 Not convex
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Entanglement witness
 Hermitian operator 𝑊𝑊

 tr 𝑊𝑊𝑊𝑊 ≥ 0 for all separable state 𝜎𝜎
 tr 𝑊𝑊𝑊𝑊 < 0 for some entangled state 𝜌𝜌

 Decomposed as a linear combination of local observables

 𝑊𝑊 = 1
2
𝐼𝐼 − Ψ− ⟨Ψ−|

 Ψ− = ( 01 − |10⟩)/ 2

𝑊𝑊 = 1
4

(𝐼𝐼 + 𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧𝜎𝜎𝑧𝑧)

 3 local measurement settings (LMSs)
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Tripartite entanglement
 Entanglement of three qubits

 𝐺𝐺𝐺𝐺𝐺𝐺 = 1
2

( 000 + |111⟩); 𝑊𝑊 = 1
3

( 001 + |010⟩ + |100⟩)

 Fully separable state
 𝜎𝜎𝐴𝐴𝐴𝐴 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖𝜌𝜌𝐴𝐴𝑖𝑖 ⊗ 𝜌𝜌𝐵𝐵𝑖𝑖 ⊗ 𝜌𝜌𝐶𝐶𝑖𝑖

 Tripartite entangled state
 Cannot be written in the above form
 What about Φ+ ⟨Φ+|𝐴𝐴𝐴𝐴 ⊗ 𝜌𝜌𝐶𝐶 ?

 Rule out “bipartite” entangled states
 𝜌𝜌𝐴𝐴𝐴𝐴 ⊗ 𝜌𝜌𝐶𝐶
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Genuine tripartite entanglement
 Bi-separable states

𝜎𝜎𝐴𝐴𝐴𝐴𝐶𝐶 = �
𝑖𝑖

𝑝𝑝𝑖𝑖(𝜌𝜌𝐴𝐴𝐵𝐵𝑖𝑖 ⊗ 𝜌𝜌𝐶𝐶𝑖𝑖 + 𝜌𝜌𝐴𝐴𝐶𝐶𝑖𝑖 ⊗ 𝜌𝜌𝐵𝐵𝑖𝑖 + 𝜌𝜌𝐵𝐵𝐵𝐵𝑖𝑖 ⊗ 𝜌𝜌𝐴𝐴𝑖𝑖 )

 Genuine multipartite entanglement (GME): 
cannot be written in the above form

 Pairwise entanglement doesn’t mean GME!

 E.g., 1
3

(Φ𝐵𝐵𝐵𝐵
+ ⊗ 𝜌𝜌𝐴𝐴 + ΦAC

+ ⊗ 𝜌𝜌𝐵𝐵 + ΦAB
+ ⊗ 𝜌𝜌𝐶𝐶)

 Stochastic LOCC
 3-qubit: two equivalent classes
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Multipartite entanglement
 Fully separable state

𝜎𝜎𝐴𝐴1𝐴𝐴2…𝐴𝐴𝑛𝑛 = �
𝑖𝑖

𝑝𝑝𝑖𝑖�
𝑗𝑗=1

𝑛𝑛

𝜌𝜌𝐴𝐴𝑗𝑗
𝑖𝑖

 Bi-separable state

𝜎𝜎𝐴𝐴1𝐴𝐴2…𝐴𝐴𝑛𝑛 = �
𝑖𝑖

𝑝𝑝𝑖𝑖𝜌𝜌𝒜𝒜𝑖𝑖 ⊗ 𝜌𝜌𝒜̅𝒜
𝑖𝑖

 where 𝒜𝒜 + 𝒜̅𝒜 = 𝑛𝑛 = {1,2, … ,𝑛𝑛}
 GME: key resource for quantum advantage?

 Competition among different physical systems
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Genuine multipartite 
entanglement (GME):
cannot be written in 
this form

Deutsch, PRX QUANTUM 1, 020101 (2020)



Entanglement structure
 m-separable state

𝜎𝜎𝐴𝐴1𝐴𝐴2…𝐴𝐴𝑛𝑛 = �
𝑖𝑖

𝑝𝑝𝑖𝑖�
𝑗𝑗=1

𝑚𝑚

𝜌𝜌𝒜𝒜𝑗𝑗
𝑖𝑖

 where 𝒜𝒜1 + 𝒜𝒜2 + ⋯+ 𝒜𝒜𝑚𝑚 = 𝑛𝑛 = {1,2, … ,𝑛𝑛}
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GME witness
 Hermitian operator 𝑊𝑊

 tr 𝑊𝑊𝑊𝑊 ≥ 0 for all bi-separable state 𝜎𝜎
 tr 𝑊𝑊𝑊𝑊 < 0 for some GME state 𝜌𝜌

 Typical way of construct GME witness
 E.g., 𝐺𝐺𝐺𝐺𝐺𝐺 𝑛𝑛 = 1

2
( 00 … 0 + |11 … 1⟩)

 𝑊𝑊 = 𝛼𝛼𝛼𝛼 − 𝐺𝐺𝐺𝐺𝐺𝐺 𝑛𝑛⟨𝐺𝐺𝐺𝐺𝐺𝐺|
 𝛼𝛼 = max

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
⟨𝐺𝐺𝐺𝐺𝐺𝐺 𝜎𝜎 𝐺𝐺𝐺𝐺𝐺𝐺⟩=0.5

 Decomposition to local observables
 Feasibility: tomography (exponential in n)
 Local measurement setting (LMS) complexity
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Permutation-invariant state
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Definition: permutation-invariant state
 Symmetric state 𝑆𝑆𝑠𝑠

 Permutation-invariant state 𝑆𝑆𝑃𝑃𝑃𝑃

 Obviously, 𝑆𝑆𝑠𝑠 ⊂ 𝑆𝑆𝑃𝑃𝑃𝑃
 Consider a PI state that is not symmetric: Ψ− = ( 01 − |10⟩)/ 2

 GHZ state: 𝐺𝐺𝐺𝐺𝐺𝐺 𝑛𝑛 = 1
2

( 00 … 0 + |11 … 1⟩)

 W state: 𝑊𝑊 𝑛𝑛 = 1
𝑛𝑛

0 … 01 + 0 … 10 + ⋯+ |10 … 0⟩)
 Dicke state: superposition of all the pure states with m 1’s
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Global operator decomposition
 Consider the GME witness

 𝑊𝑊 = 𝛼𝛼𝛼𝛼 − Ψ ⟨Ψ|, where 𝛼𝛼 = max
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

⟨Ψ 𝜎𝜎 Ψ⟩

 Decompose the operator W into local observables

𝑊𝑊 = �
𝑖𝑖

𝑂𝑂1𝑖𝑖 ⊗ 𝑂𝑂2𝑖𝑖 ⊗⋯⊗𝑂𝑂𝑁𝑁𝑖𝑖

 LMS complexity: number of terms in the summation
 In general, the LMS complexity is in the order of 3𝑁𝑁, considering tomography
 For symmetric state projection

 Number of free parameters is limited
 Can we do it more efficiently?
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Symmetric subspace
 Two equivalent definitions of symmetric subspace

 An orthogonal basis:

 Dimension of the symmetric subspace
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Decomposition of symmetric subspace
 Lemma: another (non)-orthogonal product form basis 

 Coefficient 𝑑𝑑 × 𝑁𝑁 + 1 matrix

20A. W. Harrow, arXiv: 1308.6595 (2013); Zhou, Guo, and Ma, PRA 99, 052324, (2019)

Make sure the basis states are 
linearly independent:

𝑎𝑎0,𝑗𝑗 = 1,∀𝑗𝑗
𝑎𝑎𝑘𝑘,𝑗𝑗 ≠ 𝑎𝑎𝑘𝑘,𝑗𝑗′ ,∀𝑗𝑗, 𝑗𝑗′, 1 ≤ 𝑘𝑘 ≤ 𝑑𝑑 − 1



Symmetric fidelity observable decomposition 
 GME witness: N-qubit target PI state Ψ𝑃𝑃𝑃𝑃

 Essentially measures the fidelity between a prepared state 𝜌𝜌 and Ψ𝑃𝑃𝑃𝑃

 Theorem: 𝜳𝜳𝑷𝑷𝑷𝑷 ⟨𝜳𝜳𝑷𝑷𝑷𝑷|can be d𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭 𝑁𝑁 + 2
2 LMSs

 For some special cases, the number can be further reduced

 Decompose the projector 𝛹𝛹𝑃𝑃𝑃𝑃 ⟨𝛹𝛹𝑃𝑃𝑃𝑃| into local operators
 Think of tomography: linear combination of N-qubit Pauli group elements
 Denote single-qubit Pauli group: 𝐺𝐺1 = {𝐼𝐼,𝜎𝜎𝑋𝑋,𝜎𝜎𝑌𝑌,𝜎𝜎𝑍𝑍}
 The PI density operators form 𝑆𝑆𝑆𝑆𝑚𝑚𝑁𝑁 𝐺𝐺1 subspace
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Proof of the theorem I
 Pauli operators form an orthogonal basis (in the sense of the Hilbert-

Schmidt inner product) of 𝑆𝑆𝑆𝑆𝑚𝑚𝑁𝑁 𝐺𝐺1

 These product operators can span the symmetric subspace

 Consider Pauli basis G1 = I,𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧 , then 𝑆𝑆𝑆𝑆𝑚𝑚𝑁𝑁 𝐺𝐺1 is isomorphic to 

𝑆𝑆𝑆𝑆𝑚𝑚𝑁𝑁 ℛ4 , which has the dimension of 𝑁𝑁 + 3
3

22



Proof of the theorem II
 From the Lemma, we can construct a basis set for the subspace with  

𝑁𝑁 + 3
3 basis states

 Some of the product operators can be measured by the same LMS

23

𝑁𝑁 + 2
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Measurement complexity of some typical PI 
states
 Further reduction of LMS complexity is possible with additional 

information of the target states
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Zhou, Guo, and Ma, PRA 99, 052324, (2019); [29] Gühne et al, PRA 76, 030305 (2007)



Graph state
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Definition of graph states
 Initialize all the qubits in + = ( 0 + 1 )/ 2

 Vertices
 Apply Control-Z operation between some of the qubits

 Edges 
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Very convenient to 
work with; 
generated by Ising
interaction

Briegel and Raussendorf, PRL 86,910 (2001)
Hein et al, arXiv e-prints , quantph/0602096 (2006)



EW based on graph states
 Consider the witness

 𝑊𝑊 = 𝛼𝛼𝛼𝛼 − G ⟨G|, where 𝛼𝛼 = max
𝑠𝑠𝑠𝑠𝑠𝑠

⟨G 𝜎𝜎 G⟩

 Similar to the symmetric state case, we need to measure the fidelity
 ⟨G|𝜌𝜌 G

 Decompose the operator W into local observables

𝑊𝑊 = �
𝑖𝑖

𝑂𝑂1𝑖𝑖 ⊗ 𝑂𝑂2𝑖𝑖 ⊗⋯⊗𝑂𝑂𝑁𝑁𝑖𝑖

 In this problem, we do not require the fidelity measure to be exact, a lower 
bound would do the job of witness

27

Toth and Guhne, PPL 94, 060501 (2005)
Zhou, Zhao, Yuan, and Ma, npj Quantum 
Information, 5, no. 1, pp. 1-8, (2019)



Schmidt decomposition for graph state
 𝛼𝛼 = max

𝑠𝑠𝑠𝑠𝑠𝑠
⟨G 𝜎𝜎 G⟩ = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 | ⟩𝐺𝐺 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖| ⟩𝜓𝜓𝑖𝑖 𝐴𝐴 | ⟩𝜙𝜙𝑖𝑖 𝐴̅𝐴
 Fact: entanglement spectrum of graph state is flat

 𝜆𝜆1= 𝜆𝜆2=… 𝜆𝜆𝑟𝑟 = 1
𝑟𝑟
, where r is the rank

 𝛼𝛼 = 1
𝑟𝑟

= 2−𝑆𝑆(𝜌𝜌𝐴𝐴)

 Here 𝑆𝑆(𝜌𝜌𝐴𝐴) is the entanglement entropy (EE), can be defined on any Renyi-
entropy.  
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Theoretical upper bounds for SEP states
 Bi-sep states according to the bipartition {𝐴𝐴, 𝐴̅𝐴}

 Fact: entanglement spectrum of graph state is flat
 Run all possible bipartition (tight)

 Fully-sep states according to ∪𝑖𝑖=1𝑚𝑚 𝐴𝐴𝑖𝑖

 {𝐴𝐴, 𝐴̅𝐴} the bipartition of ∪𝑖𝑖=1𝑚𝑚 𝐴𝐴𝑖𝑖
 Fully-Sep is bi-sep under any bipartition, thus a minimization here.

29

Zhou, Zhao, Yuan, and Ma, npj Quantum 
Information, 5, no. 1, pp. 1-8, (2019)



Stabilizers of graph state
 Sufficient way to detect GME for stabilizer states

 # of LMSs = # of stabilizer operators
 Still exponential #

 Further reduction (from stabilizer operator generator)
 Color the graph with k indexes 𝑉𝑉𝑙𝑙 , 𝑙𝑙 = 1,2 … 𝑘𝑘
 Stabilizer operators with the same color can be 

implemented in one setting
 # of colors: only depends on the graph
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Lower bound for fidelity measure
 Similar to the symmetric state case, we need to measure the fidelity

 ⟨G|𝜌𝜌 G
 Lower bound with less settings based on stabilizer formula

|𝐺𝐺⟩⟨𝐺𝐺| = �
𝑖𝑖

𝑆𝑆𝑖𝑖 + 𝐼𝐼
2

= �
𝑙𝑙

𝑃𝑃𝑙𝑙

 Color the graph with k indexes
 Stabilizer in the same color share one setting, leads to total k settings
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Combing the two bounds
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Example: 1-D cluster state
 Entanglement given geometry

 Area law of EE(counting # of boundary in the 1-D case)

 Here color k=2, thus leads to 5/4 and 3/2, respectively.
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Applications: without geometry
 GME detection

 Minimal entropy is 1 for a connected graph state, taking one qubit as A
 Entanglement structure: separability hierarchy ‘m’

 Non-m-separable witness

 Additional maximization on all possible m-partition ∪𝑖𝑖=1𝑚𝑚 𝐴𝐴𝑖𝑖
34



Example: cluster states
 Fully(N)-Sep (1-D,2-D)

 EE is upper bounded by the qubit number

 Saturated by choosing the partition based on the color.
 General m-Sep (1-D)
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Conclusion 
 GME witness

 Measure the fidelity of a GME pure state ⟨Ψ|𝜌𝜌 Ψ
 Decompose to LMSs

 Permutation-invariant state
 State subspace is small

 LMS complexity: 𝑁𝑁 + 2
2

 Further improvement with special cases like GHZ, W, Dicke states
 Graph state

 Small parameter space implies low LMS complexity
 Entanglement structure can be very rich
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Thank you!
 Welcome to visit
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