AE+12 %X EEWHRK

Tsinghua University Institute for Interdisciplinary Information Sciences

Fidelity measure of a multipartite

state

Xiongfeng Ma
xma@tsinghua.edu.cn
Center for Quantum Information

Zhou, Guo, and Ma, PRA 99, 052324, (2019)
Zhou, Zhao, Yuan, and Ma, npj Quantum Information, 5, no. 1, pp. 1-8, (2019)
Zhang, Tang, Zhou, Ma, arxiv: 2012.07606



= /

=

Outline

Introduction
e Genuine multipartite entanglement
e Entanglement witness
Permutation-invariant (symmetric) state
e Symmetric subspace
e Efficient decomposition to local measures
o GHZ states, W states, Dick states
Graph state
e GHZ states, 1-D/2-D cluster states

Conclusion

Zhou, Guo, and Ma, PRA 99, 052324, (2019)

Zhou, Zhao, Yuan, and Ma, npj Quantum
Information, s, no. 1, pp. 1-8, (2019)



Introduction



Einstein-Podolsky-Rosen Paradox

¢ Is Quantum Mechanics complete?
* Local hidden variable

* Entanglement

e A pair of particles: measure on one particle would instantaneously affect the
state of the other

Spooky
action at a
distance




Bell’s inequality
* Quantum mechanics vs. local hidden variable

From wikipedia.org

X
A
YB
Source
6 -
YA 1
[07) = —=(|0), @0}z +[1), @ [1)p)
\/5 A B A B XB
Alice Bob
1

S = — (Taty) + (Tap) + (YaTs) + (Yalp) (Taxp) = _ﬁ

= (et a)o) + @ 9] ) = () = () = %

2
< _$(L+ a.+$a+ O‘SQ
<| Yal + [Za + S —93




,/—/"/'/

= et

E n ta n g I e m e n t t,%iartztc;z;leright—handelectran is determined. i
. \" . /
Nonlocal correlation B * i {
 Why quantum mechanics is “weird” B S

ncongru ‘tht f I|:||:|t nsm|tt |:|fst r than ‘th speed o flght
{‘th EPRP ado: )H th actually oc inder quantum mechanics.

e Stronger than any classical correlation
Unpredictable results

e Any prediction will be served as hidden variables
Not for instantaneous communication

e Compatible with causality (relatives)

Useful in many information processing tasks




Observations of entanglement
Ann. New York Acad. Sci. 48, 219 (1946)

e “Two quanta emitted in the annihilation of a positron-
electron pair, with zero relative angular momentum,
are polarized at right angles to each other”

Phys. Rev. 77, 136 (1950)

e Early observation of quantum entanglement

The Angular Correlation of Scattered
Annihilation Radiation™

C. S. Wu AnND 1. SHARKNOV

Pupin Physics Laboratories, Columbia University, New York, New York
November 21, 1949

Chien-Shiung Wu



Entanglement witness
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Definition of bipartite entangled state

* Separable state

OpoB = z pip,l;l X Pzia
i

Quantum states

e Forms a convex set

Entangled states
* Entangled state S

e Cannot be written in the above form

* Bg., [0*) = =(|00) + [11))

Separable

states /

e Not convex




S oo i
O. Guhne and G. Toth, Physics Reports 474, 1 (2009)

Entanglement witness

Hermitian operator W
e tr[Wa] = 0 for all separable state o
e tr{Wp] < 0 for some entangled state p

Decomposed as a linear combination of local observables

‘W”’ W(E_J
- -
° [¥7) = (101) — [10))/V2 Y o N
o W = Z (I + gy0, + 050y + 0,0,) [ separable

//f

P
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* 3 local measurement settings (LMSs) \

\H;:\; ——— e o® f’e’ntangle d > >
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Tripartite entanglement

Entanglement of three qubits

1 1
o |GHZ) = \/—E(lOOO) + |111)); [W) = \/—§(|001) + |010) + [100))
Fully separable state >
: : : y N
* 048 = L;iPiPa ® ps ® p¢ s
Tripartite entangled state Alice Charlie
e Cannot be written in the above form | |

e What about |[®" WP |5 & pr ?
Rule out “bipartite” entangled states

* pap Q pc
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Genuine tripartite entanglement

* Bi-separable states

Oiic = z p;(phs ® pt + phc ® Pk + phe  ph)
[

* Genuine multipartite entanglement (GME): [P, — ge
cannot be written in the above form

* Pairwise entanglement doesn't mean GME!

1
ko = (PEc @ pa+ Pic Q@ pp + PAp Q pe)
e Stochastic LOCC

e 3-qubit: two equivalent classes




Multipartite entanglement

Fully separable state
n
Ot 4 A, = z Di ® ptl;lj
i j=1

Bi-separable state Genuine multipartite
: ' entanglement (GME):
O'AlAZ___An = Z plpiq ® pjcz - 8 ( )

L

cannot be written in
= this fe
e where A + A = [n] ={1,2,...,n} =
GME: key resource for quantum advantage?
e Competition among different physical systems

Deutsch, PRX QUANTUM 1, 020101 (2020)
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Entanglement structure

* m-separable state
OA,4,..4, = z Di ® Pc/z]
l

e where A + A, + -+ Ay, = [n] ={1,2,..

GME

Entanglement hierarchy




GME witness

* Hermitian operator W
e tr[Wa] = 0 for all bi-separable state o
o tr[Wp] < 0 for some GME state p

* Typical way of construct GME witness
e Eg, |GHZ), = %qoo 2 0) + (11 ... 1))

e W =al —|GHZ),(GHZ|

e « = max{GHZ|o|GHZ)=0.5
bisep

* Decomposition to local observables
e Feasibility: tomography (exponential in n)
e Local measurement setting (LMS) complexity

15



Permutation-invariant state



Definition: permutation-invariant state

Symmetric state S
[Ys) = P(m)|yrg), Vo

Permutation-invariant state Sp;

p™ = P(r)p" P(r), Vr
ObViOU.SlY, SS C SPI

o Consider a PI state that is not symmetric: |[¥~) = (|01) — [10))//2
GHZ state: |GHZ),, = %qoo 0 L D)

W state: |W),, = viﬁuo 01) +1]0..10) + - + |10 ... 0))

Dicke state: superposition of all the pure states with m1’s
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Global operator decomposition

Consider the GME witness
e W = al — |P)(¥|, where a = max(¥|c|¥)
bisep

Decompose the operator W into local observables

W=ZO{®0§®---®0}V

e LMS complexity: number of terms in the summation
In general, the LMS complexity is in the order of 3", considering tomography
For symmetric state projection

e Number of free parameters is limited

e Can we do it more efficiently?

18



Symmetric subspace

Two equivalent definitions of symmetric subspace
Symy (Ha) = {|¥) € HEY : Py(n)|¥) = |¥), Vr € Sy}

Symy (Ha) = span{|¢)“" : |¢) € Ha}.
An orthogonal basis:

{}LIJ;> = Z |U>®io‘1>®i1 o ‘d B 1)®id_1

Dimension of the symmetric subspace {%} S 0N 0 < < N}

N+d—1\ (N+d-1)
DSZ( N ): (N!(d—l)!)

d—1
ir €T, Y ip= N}

k=0

™




Decomposition of symmetric subspace

Lemma: another (non)-orthogonal product form basis
d—1

B{ jkEZthkN}
k=0

B ={|®;) =(0) +a;|1))*"|0 < j <N}
Coefficient d X (N + 1) matrix

QKN
‘I’:}’> B (aﬂa:fom) +ay 1)+ Faa-15,,|d - 1))

( 1 1 . 1
Make sure the basis states are
1,0 a1+ QA1.N . .
linearly independent:
(LQHO 052.1 RN (LQH-'\-"' o :
' ' aO,j == 1, V]
Ay j # akjr,Vj,j’,l <k<d-1
\ Ag—1,0 Ad—1,1 -+ Ad—1 N /

A. W. Harrow, arXiv: 1308.6595 (2013); Zhou, Guo, and Ma, PRA 99, 052324, (2019) .
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Symmetric fidelity observable decomposition
GME witness: N-qubit target PI state “PP ! )

e Essentially measures the fidelity between a prepared state p and |¥7)

N=E
2

» For some special cases, the number can be further reduced

Theorem: |#P!)(WP!|can be decomposed to ( ) LMSs

Decompose the projector |#P/)(®¥P!| into local operators
e Think of tomography: linear combination of N-qubit Pauli group elements
e Denote single-qubit Pauli group: G; = {I, oy, gy, 7}
e The PI density operators form Symy (G;) subspace
Symy(Gy) ={M € Fg, : P(m)MP(r) =M,V € Sy}
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Proof of the theorem |

Pauli operators form an orthogonal basis (in the sense of the Hilbert-
Schmidt inner product) of Symy (G;)

/ ®j k QN —i—j—k)
qu_jq_k = E [® & Oy / X U}@ 024 o !
s

These product operators can span the symmetric subspace

Symy(Gy) = span{A@“"‘; A =al + boy + coy + doy}
Consider Pauli basis G; = {I, Oy Oy, JZ}, then Symy(G,) is isomorphic to

Sympy(R,), which has the dimension of (N ;_ 3)

FGN = (Ril)@hr



Proof of the theorem Il

From the Lemma, we can construct a basis set for the subspace with
(N + 3

3 ) basis states

- |
N :
B, = {(Ql,j|]1‘|‘a2,j2C7X +a3 0y +do j,07)%" | Z Jk = N}
k=0
Some of the product operators can be measured by the same LMS

B” _— {((I,H —+ bJ,'O'X + C; 0y + Uz)®N|O

= (bjox + oy +sz)®iw—>(
SLLKSN, i+ ]+ k<N,

N+2)
2
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surement complexity of some typical P|

states

Further reduction of LMS complexity is possible with additional
information of the target states F = (WP [p|WPTY = Tr(p|wP!)(wP1)

TABLE I. Measurement complexity of some typical PI states.
For these states, the measurement complexity is linear, @(N).

State Upper bound Lower bound
|14 2N — 1[29] N —1
Dicke mQ2m + 3)N + 1 N —2m+4 1
GHZ N 4+ 1[29] [

Zhou, Guo, and Ma, PRA 99, 052324, (2019); [29] Giihne et al, PRA 76, 030305 (2007)



Graph state



/‘ - Briegel and Raussendorf, PRL 86,910 (2001)

Hein et al, arXiv e-prints , quantph/0602096 (2006)

Definition of graph states
» Initialize all the qubitsin |+) = (]0) + |1))/+2

G) = Cz 334y N
e Vertices ©) H +)

(i,7)€E
* Apply Control-Z operation between some of the qubits
e Edges 4 4 i 4 4,
© e 0 060 000 0
@ 90O . Very convenient to
o—0—o0 ® | work with;
i * | generated by Ising
I A ¢ ® interaction
o900 ©
4,
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%thanﬁm 94, 060501 (2005)
Zhou, Zhao, Yuan, and Ma, npj Quantum

Information, 5, no. 1, pp. 1-8, (2019)

 EW based on graph states

Consider the witness
e W = al — |G){G|, where a = max{G|ag|G)
sep

Similar to the symmetric state case, we need to measure the fidelity

* (G|p|G)
Decompose the operator W into local observables

w="0{®0}®® 0}

In this problem, we do not require the fidelity measure to be exact, a lower
bound would do the job of witness

27
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Schmidt decomposition for graph state

O (= max(GIUlG) — Amax
sep

* 16) =XV A&ilbi)a 1bi)a
* Fact: entanglement spectrum of graph state is flat
1

e A= A,=... 4, = =, wherer is the rank
- o
O (= % —_— Z_S(pA)

e Here S(p,) is the entanglement entropy (EE), can be defined on any Renyi-
entropy.




—4hou,-.

, Yuan, and Ma, npj Quantum
Information, 5, no. 1, pp. 1-8, (2019)

Theoretical upper bounds for SEP states

Bi-sep states according to the bipartition {4, A}

Tr(|GY(G|pp) < 9~ 5(pa)
r(|G)( Ipb)_{rg?g}

 Fact: entanglement spectrum of graph state is flat
e Run all possible bipartition (tight)
Fully-sep states according to UL, A4;

Tr (|G){(G|ps) < min 27 54)
(1G) ‘Pf)_{lilg}

e {A, A} the bipartition of U}, A;

®

@

19!

f

e Fully-Sep is bi-sep under any bipartition, thus a minimization here.

29



Stabilizers of graph state

Sufficient way to detect GME for stabilizer states S =X, ® H Z,
e # of LMSs = # of stabilizer operators jEN;
e Still exponential # N oo oo
Further reduction (from stabilizer operator generator) 1:[

e Color the graph with kindexes V;,l = 1,2 ...k

e Stabilizer operators with the same color can be B ¢ ¢

implemented in one setting o0 0 ¢

e # of colors: only depends on the graph PP S ®
S +1 5

o T+ SR am an

o0 0 ©

eV)

30



Lower bound for fidelity measure

Similar to the symmetric state case, we need to measure the fidelity

* (G|p|G)
Lower bound with less settings based on stabilizer formula

6)(] =1_[S"2”=1_[P1
[ l

G\>ZF} Py =

i€V

S +1

e Color the graph with k 1ndexes

e Stabilizer in the same color share one setting, leads to total k settings

31
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Combing the two bounds

Theorem 1. Given a partition P = {A;}, the operator Wf can witness non-P-fully separability (entanglement),

W;}_(k—l—l— min 2~ SP“") ZP;, (12)

{A,A}

with (WF) > 0 for all P-fully-separable states; and the operator Wf can witness P-genuine entanglement,

WP = k:—l-l—ma 2SPA))11— P, 13
S O ) o 1

with (W) > 0 for all P-bi-separable states, where {A, A} is a bipartition of {A;}, pa = Trz(|G)(G|), and the
projectors Py is defined in Eq. (25).

32
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Example: 1-D cluster state

e Entanglement given geometry

5
vaalzi]l_(Pl_l_Pg) 4 4, A,

: A
W551:§H—(P1+P2) |

 Area law of EE(counting # of boundary in the 1-D case)

S(pAl) — S(pﬂs) =1 S(pﬂz) = 2

e Here color k=2, thus leads to 5/4 and 3/2, respectively.

33



Applications: without geometry
GME detection

k
1
WPy = (k = 5) I-> P
[=1

e Minimal entropy is 1 for a connected graph state, taking one qubit as A

Entanglement structure: separability hierarchy ‘m’
e Non-m-separable witness

k
W, = | k—1+max min 27°P4) | T — P
( P {A.A} ; :

Additional maximization on all possible m-partition U, A4;

34



Example: cluster states 4
* Fully(N)-Sep (1-D,2-D) !

 EE is upper bounded by the qubit number -

S(pa) < min{|A[,[A[} 5]
e Saturated by choosing the partition based on the color.

F
Wrs =1+27Fh1— (P, + By) ‘.
o

* General m-Sep (1-D)
Wm=C1 — (1 + 2_L%J)H — (Pl + P?)

35
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Conclusion

GME witness
e Measure the fidelity of a GME pure state (¥|p|¥)
e Decompose to LMSs

Permutation-invariant state
e State subspace is small

e LMS complexity: (N ; 2)

e Further improvement with special cases like GHZ, W, Dicke states

Graph state
e Small parameter space implies low LMS complexity
e Entanglement structure can be very rich

36



Thank youl!

Welcome to visit
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