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1. Introduction

© Quantum system is always subject to noise from environment —

Open quantum system

@ Quantum devices often require small size environment, ultra low
temperature and/or ultra high vacuum.

© Then the quantum dynamics can be non-Markovian.
@ Non-Markovian relaxation is studied in a controllable way here.

© NMR is used to simulate such an open quantum system
experimentally.

@ The Gorini-Kossakowski-Lindblad—Sudarshan (GKLS) master
equation is solved exactly for interesting cases and the results are
compared with NMR experiment.



2. Theory

2.1 Basic Idea
(a) (b)
System Il
nteraction
I Interaction
Markovian environment Markovian environment

(a) is the conventional situation in which quantum information of System |
“leaks” to the Markovian environment. We assume System | is made of a single
qubit from now on.

We analyze the case (b), in which the information leaks to the environment
through System Il. Interaction between Systems | and Il is treated rigorously. The
coupling strength between Systems | and Il is controllable.




2. Theory

2.2 Markovian Environment (Case (a))
Let p be a System | state. Find p at t > 0 by solving the GKLS eqn.

dp

¢ = ~H, ol + Llp]-

H is the Hamiltonian of System | and L is called the Lindbladian;

Llp] := Z%‘(QL:'PL,T —{LIL;, p}).

i

Consider a case in which the environment randomly flips System | qubit;
O'ipOi O304
£l = e (27 - {5 0}).
[o] := }:7 i

o+ = (0x £ioy,)/2. v+ represents the flip-flop (| ) <> | 1)) rate of the qubit.
Assume they are symmetric; 74 = 7— 1= 1.




2. Theory

2.2 Markovian Environment (Case (a))
We take H = 0 for simplicity. Then the GKLS eqn. is

%S (2 (5 0))

This is solved exactly leading to exponential relaxation with a characteristic time
2/7.

Remark: When the System | qubit is under a magnetic field along the z-axis, the
GKLN eqn. is given by

R B )

The first term can be dropped if we move to the rotating frame.




2. Theory

2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))
Assume both System | and System Il are made of 1 qubit. Let

P11 P12 P13 P14
p(1) _ Pl2 P22 P23 P24
Pis P23 P33 P34
Pla P24 P34 Paa

be the state of the total system. Basis {|00), |01), |10), |11)}.
|ab) = [a)o ® |b)1 == [a)1|b)1r-

) ”i P() SQ (¢)”§:) ) (N,
Lp ]_ZZ% - 7 P :=Z£ [/*M],

i=0,1 =+ i=0,1

where (7/(10) =0y, ®0p etc. 1 1= Y0, 711 ‘= V1-




2. Theory

2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))

Let's take

1 _ @ (1) (1) UEO) ) gl) (1) 0>(<1)
HY = H}” + H/, H; ::Jf,HW1 =W
It is shown that w; controls the effective coupling between qubits and also

(o3

non-Markovianity of relaxation.

GKLS Egn

dp® :
i = —i[HD, p + £[pD] = DD [pD] + O[],

o] := —i [H(l), . ] +£Yo].

Solve this with the initial condition p 1)(0

) = [+){(+] ® 00/2, |+) = (10} + [1))/v2:
1 01 0
RIS ;)
0 01

= o =




2. Theory

GKLS Eqgn.

Let us expand p in terms of the generators of s[(2; C) and the unit matrix of
qubit-0 as

© A A1) O A0 40 O ©
=% AL A oe ATA % gy T gyt
2 2 2 2 2 2 ’

A(11) =00 ® pil P12 7A(21) = 0o ® Pia P34 ,B(l) = 0o ® P13 P14 '
P12 P22 P34 P44 P23 P24
Then the GLKS eqn. is decomposed as

dA
dt

dAl)
dt

dB™

1 1
= (A, A), -

:g(A(ll)vAgl))v = h(B(l))’
The dynamics of B1) is decoupled from those of A", A and (BM)f. The 1st
and the 2nd eqns have no dynamics for our initial conditions:

F(AL(0), A8 (0)) = g(A(0), AV (0)) = 0 — dAY /dt = dA /dt = 0.




2. Theory

GKLS Eqgn.

Dynamics of B(1); Initial condition B1*)(0) = 0o ® 0¢/2.
Factorize BA)(t) as B(M) = e="t/2B()(t) and substitute it to GKLS eqgn. to find

d
E(b07 bX7 byv bz)t - Mo(b07 bXa byv bz)t

0 x y z

1 0 0 0 —iJ
where B(1) = 32 —0xy.z b, and My := 5[ 0 —m 0 0
0 0 -y 2wy

—i./ 0 —2w1 —2711
by is decoupled from the rest of components and b,(t) = 0 with our initial
condition by =1, by = b, = b, =0 at t = 0. Then GKLS eqn is simplified as
bo bo 1 0 0 —iJ
b, | = M| b, M = > 0 —m 2w
bz bz —iJ —2w1 —2’)/11




2. Theory

GKLS Eqgn.
This equation is exactly solvable, see our NJP paper. The reduced density matrix
is
—Mt/2p(t)
(1) —Tr (1) _ l 1 et O(
P1 u(p™) 5 <e_'“t/2b0(t) 1 .

It can be shown that by(t) € R for Vt > 0. Note that pgl)(O) = |+)(+| and
Pt (00) = 00/2.

Remark:

bo(t) = un exp(A1t/2) + 2exp(A5t/2) (uff cos(Ayt/2) — ubsin(Mrt/2)).



2. Theory

2.3 Non-Markovian Environment: 1 4+ n-Case (Case (b))

Let us generalize the previous analysis to n > 2 cases. Consider a star-shaped
network in which the central qubit (System |) couples with other qubits (System
II) with the same strength J. No interactions among System |l qubits.

noo . © 0 ()
(HP +HD), HD = g2 B = 2
i=1

H

Index 0 for System | while indices 1 </ < n for System II.
Basis vectors {|00...00),|00...01),|00...11),...,|11...10),|11...11)},
lab...cd) = |a)o® [b)1 ® ... ®|C)p_1 ® |d)p.




2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

Lindbladian is

n (i), (i) (i) (i) n
O'ipO' ag. Ui B
Ll =>2> i (2 7 £ —{ ¢4 m}) =" L]
i=0

i=0 =+

where we assume 1 = 72 = ...7v, =: yi1. The GKLS eqn. is

d () . n n . i n n
o = i A+ L[] = 3 DO + £,
i=1

DOfe] := —i [(H + HD). o | +£0],

) )

. 1 n 1 [P oP"
P7(0) = [H){(+ ® (500)%" = 575 ( ®n %n>

Decompose p(” as p" =
0 n n 0 n n 0 (0) n n
o) AP +AY o AD - A "(+).B(n)+02.(B("))T:<A3() Bm).

2 2 2 2t (B' ™"

v




2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

With initial condition A{”(0) = AY(0) = B™(0) = (B™)!(0) = 00 @ %0¢", A" and
A" are t-independent and B(™ decouples with A" A{” and B as before. By
factoring B(" as e M1/2B(") a5 before, we get rid of the effect of £(® and GKLS eqn. is

written as
(0)

n ()
d (05 Ao 0 |9 g
dt( + B (t))_;D = B(t)|.

Since there is no correlations among System Il qubits we may introduce an Ansatz
B"(t) =11, s"(t), where <) = 1Y oy b)) The dynamics of b\ decouples
from those of other b)'s. The |n|t|al condition

b§"(0) = 1, bY(0) = b (0) b{(0) = 0 tells us that b{(t) vanishes identically.

The action of D) on 1O'+ (O’M /2) is

0 y z
N © _ 0) i
pi) | T | _ 0% BOMY, 2, ML O 0 e
2 2 . 2 21 0 —11 2w

— IJ *20.)1 72’711




2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

This M is exactly the same as M for 1 + 1-case. We obtain the ODE for b as

B B
di b | =mt | b5 |, 1<i<n.
t NG NG

The solution is independent of i and easily found from the one for the 1 + 1-case.
The reduced density matrix of System | is

(n) (n) U((JO) - Ut()i) t/2 UErO) : (1)
n . n) __ -1 1
pr (t) =T p'™ = > Tr I I > +e > Tr -|_1| S + h.c.

=il

_1 1 e M2 (bo(t))"
T2 \e 2 (by(t))" 1 ’

Let us define 3,(t) := e~ 71"/2(by(t))" for later convenience. The first factor represents
Markovian relaxation due to direct interaction with environment while the second factor
represents non-Markovian relaxation through System II.




2. Theory

2.4 Non-Markovianity Measure

It is possible to control non-Markovianity by controlling wi. To quantify
non-Markovianity, we introduce the trace distance D[p(t), p’(t)] = Tr|p(t) — p'(t)|/2 of
p and p’ and define the measure

d
N = max / —DIp(t), p'(t)]dt,
3% [, 0 0)

where Q. := {t € [0,00)| £ D[p(t), p'(t)] > O}.
[H.P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett., 103, 210401 (2009).]

Dlp(t), p'(t)] Dlp(t),p'(t)]

Markovian non-Markovian
4D[p(t), p'(1)] > 0

\/'\=




2. Theory

2.4 Non-Markovianity Measure

Consider an initial state

i0
p"(t=0,6) = % ( e,l,.g el ) ® (H %)

Then at a later time t, the reduced density matrix is

(n) . 1 1 eioﬁn(t)
pI (tv 0) - 2 <e—i96n(t) 1 ) .

The trace distance of two such states is

n n 01 — 0
D[p{"(t, 61), 1" (¢, 62)] = =)l

Bn(t) sin(

A pair of pure states in System | with antipodal initial Bloch vectors, pgn)(O, 0) and
p{(0,0 + ), maximizes the integrand dD[p\"(t,6), p\" (t,0 + )]/dt of N at Vt > 0.

() ()
R LY (GRS LG
. dt . t

d




3. Experiment

3.1 NMR Setup
@ Qubit = Spin-1/2 nucleus.

@ TMS molecule: System | (**Si nucleus) and System Il (n = 12 H nuclei). The
star-shaped TMS has the common J.

@ Oxygen molecules in the solvent (acetone-d6) act as the magnetic impurities
producing finite : Environment.

@ The Zeeman energy wéo)ogo)/2 + wél) D wgi)/2 can be eliminated by employing

the rotating frame.

@ ~r is measured first by “decoupling” System Il spins.




3. Experiment

3.2 NMR Hamiltonian

@ The Hamiltonian of the TMS molecule is

2 (), (i) 2 ()

) a
H:JZI%-HAMZI%.

when the external RF field is in resonance with the Larmor frequency of the
System |l spins. J = 27 x 6.6 rad s~ 1.

w1 is a static parameter proportional to the applied RF field strength.

The Hamiltonian physically implements our theoretical model with n = 12.
Non-Markovianity is controllable by adjusting ws.

Measured values of 4's are (y1,v11) = (0.41,0.20) rad s~ .




3. Experiment

3.3 FID Signals

@ Set p1 = |+)(+| at t = 0 and measure M,(t) :ox Tr(pi(t)ox). The signal decays as
time goes (Free Induction Decay).

Tr(pi(t)ox) = ;Tr< Bntt) 5n1(t) > < (1) ; ) = Ba(t) = e 2 py(1)".

@ When wy is very large, System Il spins precess rapidly, which averages out the
coupling J (decoupling). System | spin polarization decays as o e~ M2 in this
limit and relaxation is Markovian.

@ When w; = 0, in contrast, we have non-Markovian limit.

@ Let us look at experimental data keeping the above observation in our mind.




3. Experiment
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@ Red/black curves are real/imaginary parts of normalized FIDs.

@ Blue curves in experiment are obtained by moving averaging.
@ Dotted curve in top left shows e~ "1%/2,
. . . 1 (w1 — we)?
@ Green curve with spatial inhomogeneity f(w1) = exp( )
() V2mo 202



3. Experiment

3.4 Non-Markovianity

N = max /Q %D[p(t),p'(t)]dt.

 p(0),0(0)

)
'E Y@ e
'g 20
=
©
=15
&
o
Z 10
4 — v o
0
0 10 20 30 40

w1/271[Hz]
Solid red curves are f12(t) while dashed blue curves are |B1(t)].
Bi(t) = e /2 [uy exp(Ait/2) + 2exp(AFt/2) (uf cos(Aot/2) — ubsin(Mt/2))].




3. Experiment

3.4 Non-Markovianity

@ Why dip and peak instead of monotonic decrease?

@ Note that wi does not directly control N. It controls N by modulating the
effective coupling strength between Systems | and II.

@ There are two time scales 27/J and 27 /w;. They compete each other when
w1/2m ~ J/21 ~ 6.6.

@ When w; is small, the oscillation center of 51(t) gradually shifts up as w; increases,
which makes contribution of 812 ~ 812 to A less and less as w; increases.
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@ When f; is lifted up totally above 0, n = 12 enhances non-Markovianity since the
power amplifies the derivative — the dip.

FID Signal

@ N gradually decreases as ws increases since the oscillation gradually disappears.




3.4 Non-Markovianity
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Theory curve: Spatial inhomogeneity of w; taken into account.
Qualitative agreement with NMexp,. No fitting parameters in theory!




4. Summary and Outlook

@ We proposed a theoretical model that interpolates between Markovian relaxation
and non-Markovian relaxation.

@ The total system is made of System | (principal system), System Il (a part of
environment interacting with System |) and environment.

@ Interaction between Systems | and Il is controllable by adjusting the external field
applied to System Il, by which the relaxation changes from Markovian to
non-Markovian.

@ Non-Markovianity is measured by A/

@ We implemented the theoretical model faithfully with NMR. FID signals and N
show qualitative/quantitative agreement between theory and experiment.

@ N(w1) shows a peculiar behavior, which can be explained by analyzing FID signals.

@ Is it possible to replace n spin-1/2 nuclei by a big spin? The Majorana
representation is a technique to visualize a higher dimensional complex vector in
terms of multiple Bloch vectors. How about (Majorana representation)™'?

@ Is there any practical application of our work?



Thank you very much for your attention. #f#f



