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1. Introduction

1 Quantum system is always subject to noise from environment →
Open quantum system

2 Quantum devices often require small size environment, ultra low

temperature and/or ultra high vacuum.

3 Then the quantum dynamics can be non-Markovian.

4 Non-Markovian relaxation is studied in a controllable way here.

5 NMR is used to simulate such an open quantum system

experimentally.

6 The Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) master

equation is solved exactly for interesting cases and the results are

compared with NMR experiment.
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2. Theory

2.1 Basic Idea

Markovian environment

System I

Interaction

(a)

(a) is the conventional situation in which quantum information of System I

“leaks” to the Markovian environment. We assume System I is made of a single

qubit from now on.

We analyze the case (b), in which the information leaks to the environment

through System II. Interaction between Systems I and II is treated rigorously. The

coupling strength between Systems I and II is controllable.
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2. Theory

2.2 Markovian Environment (Case (a))

Let ρ be a System I state. Find ρ at t > 0 by solving the GKLS eqn.

dρ

dt
= −i [H, ρ] + L[ρ].

H is the Hamiltonian of System I and L is called the Lindbladian;

L[ρ] :=
∑
i

γi (2LiρL
†
i − {L†i Li , ρ}).

Consider a case in which the environment randomly flips System I qubit;

L[ρ] :=
∑
±

γ±

(
2
σ±ρσ∓

4
−
{σ∓σ±

4
, ρ
})

.

σ± = (σx ± iσy )/2. γ± represents the flip-flop (| ↓⟩ ↔ | ↑⟩) rate of the qubit.

Assume they are symmetric; γ+ = γ− := γI.
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2. Theory

2.2 Markovian Environment (Case (a))

We take H = 0 for simplicity. Then the GKLS eqn. is

dρ

dt
=
∑
±

γI

(
2
σ±ρσ∓

4
−
{σ∓σ±

4
, ρ
})

.

This is solved exactly leading to exponential relaxation with a characteristic time

2/γI.

Remark: When the System I qubit is under a magnetic field along the z-axis, the

GKLN eqn. is given by

dρ

dt
= −i

[
ω0

σz

2
, ρ
]
+
∑
±

γ
(
2
σ±ρσ∓

4
−
{σ∓σ±

4
, ρ
})

.

The first term can be dropped if we move to the rotating frame.
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2. Theory

2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))

Assume both System I and System II are made of 1 qubit. Let

ρ(1) =


ρ11 ρ12 ρ13 ρ14
ρ∗12 ρ22 ρ23 ρ24
ρ∗13 ρ∗23 ρ33 ρ34
ρ∗14 ρ∗24 ρ∗34 ρ44


be the state of the total system. Basis {|00⟩, |01⟩, |10⟩, |11⟩}.
|ab⟩ = |a⟩0 ⊗ |b⟩1 := |a⟩I|b⟩II.

L[ρ(1)] =
∑
i=0,1

∑
±

γi

(
2
σ
(i)
± ρ(1)σ

(i)
∓

4
−

{
σ
(i)
∓ σ

(i)
±

4
, ρ(1)

})
:=
∑
i=0,1

L(i)[ρ(1)],

where σ
(0)
µ = σµ ⊗ σ0 etc. γI := γ0, γII := γ1.
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2. Theory

2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))

Let’s take

H(1) = H
(1)
J + H(1)

ω1
, H

(1)
J := J

σ
(0)
z · σ(1)

z

4
,H(1)

ω1
:= ω1

σ
(1)
x

2
.

It is shown that ω1 controls the effective coupling between qubits and also

non-Markovianity of relaxation.

GKLS Eqn.

dρ(1)

dt
= −i [H(1), ρ(1)] + L[ρ(1)] = D(1)[ρ(1)] + L(0)[ρ(1)],

D(1)[•] := −i
[
H(1), •

]
+ L(1)[•].

Solve this with the initial condition ρ(1)(0) = |+⟩⟨+| ⊗ σ0/2, |+⟩ = (|0⟩+ |1⟩)/
√
2:

ρ(1)(0) =
1

4


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 .
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2. Theory

GKLS Eqn.

Let us expand ρ in terms of the generators of sl(2;C) and the unit matrix of

qubit-0 as

ρ(1) =
σ
(0)
0

2
· A

(1)
1 + A

(1)
2

2
+

σ
(0)
z

2
· A

(1)
1 − A

(1)
2

2
+

σ
(0)
+

2
· B(1) +

σ
(0)
−
2

· (B(1))†,

A
(1)
1 := σ0 ⊗

(
ρ11 ρ12
ρ∗12 ρ22

)
,A

(1)
2 := σ0 ⊗

(
ρ33 ρ34
ρ∗34 ρ44

)
,B(1) := σ0 ⊗

(
ρ13 ρ14
ρ23 ρ24

)
.

Then the GLKS eqn. is decomposed as

dA
(1)
1

dt
= f (A

(1)
1 ,A

(1)
2 ),

dA
(1)
2

dt
= g(A

(1)
1 ,A

(1)
2 ),

dB(1)

dt
= h(B(1)),

The dynamics of B(1) is decoupled from those of A
(1)
1 , A

(1)
2 and (B(1))†. The 1st

and the 2nd eqns have no dynamics for our initial conditions:

f (A
(1)
1 (0),A

(1)
2 (0)) = g(A

(1)
1 (0),A

(1)
2 (0)) = 0 → dA

(1)
1 /dt = dA

(1)
2 /dt = 0.
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2. Theory

GKLS Eqn.

Dynamics of B(1); Initial condition B(1)(0) = σ0 ⊗ σ0/2.

Factorize B(1)(t) as B(1) = e−γIt/2B̃(1)(t) and substitute it to GKLS eqn. to find

d

dt
(b0, bx , by , bz)

t = M0(b0, bx , by , bz)
t

where B̃(1) = 1
2

∑
ν=0,x,y ,z bνσ

(1)
ν and M0 :=

1

2

0 x y z
0 0 0 −iJ

0 −γII 0 0

0 0 −γII 2ω1

−iJ 0 −2ω1 −2γII

 .

bx is decoupled from the rest of components and bx(t) = 0 with our initial

condition b0 = 1, bx = by = bz = 0 at t = 0. Then GKLS eqn is simplified as

d

dt

b0
by
bz

 = M t

b0
by
bz

 M :=
1

2

 0 0 −iJ

0 −γII 2ω1

−iJ −2ω1 −2γII

 .
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2. Theory

GKLS Eqn.

This equation is exactly solvable, see our NJP paper. The reduced density matrix

is

ρ
(1)
I = TrII(ρ

(1)) =
1

2

(
1 e−γIt/2b0(t)

e−γIt/2b0(t) 1

)
.

It can be shown that b0(t) ∈ R for ∀t > 0. Note that ρ
(1)
I (0) = |+⟩⟨+| and

ρ
(1)
I (∞) = σ0/2.

Remark:

b0(t) = u1 exp(λ1t/2) + 2 exp(λR
2 t/2)

(
uR2 cos(λI

2t/2)− uI2 sin(λ
I
2t/2)

)
.
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2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

Let us generalize the previous analysis to n ≥ 2 cases. Consider a star-shaped

network in which the central qubit (System I) couples with other qubits (System

II) with the same strength J. No interactions among System II qubits.

I
II

II

II

II

n=4

J

J
J
J

H =
n∑

i=1

(
H

(i)
J + H(i)

ω1

)
, H

(i)
J := J

σ
(0)
z · σ(i)

z

4
, H(i)

ω1
:= ω1

σ
(i)
x

2
,

Index 0 for System I while indices 1 ≤ i ≤ n for System II.

Basis vectors {|00 . . . 00⟩, |00 . . . 01⟩, |00 . . . 11⟩, . . . , |11 . . . 10⟩, |11 . . . 11⟩},
|ab . . . cd⟩ = |a⟩0 ⊗ |b⟩1 ⊗ . . .⊗ |c⟩n−1 ⊗ |d⟩n.
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2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

Lindbladian is

L[ρ] =
n∑

i=0

∑
±

γi

(
2
σ
(i)
± ρσ

(i)
∓

4
−

{
σ
(i)
∓ σ

(i)
±

4
, ρ

})
:=

n∑
i=0

L(i)[ρ]

where we assume γ1 = γ2 = . . . γn =: γII. The GKLS eqn. is

dρ(n)

dt
= −i [H, ρ(n)] + L[ρ(n)] =

n∑
i=1

D(i)[ρ(n)] + L(0)[ρ(n)],

D(i)[•] := −i
[
(H

(i)
J + H(i)

ω1
), •

]
+ L(i)[•],

ρ(n)(0) = |+⟩⟨+| ⊗ (
1

2
σ0)

⊗n =
1

2n+1

(
σ⊗n
0 σ⊗n

0

σ⊗n
0 σ⊗n

0

)

Decompose ρ(n) as ρ(n) =

σ
(0)
0

2
· A

(n)
1 + A

(n)
2

2
+

σ
(0)
z

2
· A

(n)
1 − A

(n)
2

2
+

σ
(0)
+

2
·B(n) +

σ
(0)
−

2
· (B(n))† =

(
A′

1
(n)

B ′(n)

(B ′(n))† A′
2
(n)

)
.

13 / 26



14/26

2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

With initial condition A
(n)
1 (0) = A

(n)
2 (0) = B(n)(0) = (B(n))†(0) = σ0 ⊗ 1

2n
σ⊗n
0 , A

(n)
1 and

A
(n)
2 are t-independent and B(n) decouples with A

(n)
1 ,A

(n)
2 and B(n)† as before. By

factoring B(n) as e−γIt/2B̃(n) as before, we get rid of the effect of L(0) and GKLS eqn. is

written as
d

dt

(σ(0)
+

2
· B̃(n)(t)

)
=

n∑
i=1

D(i)

[
σ
(0)
+

2
· B̃(n)(t)

]
.

Since there is no correlations among System II qubits, we may introduce an Ansatz

B̃(n)(t) =
∏n

i=1 ς
(i)(t), where ς(i) = 1

2

∑
ν=0,x,y,z b

(i)
ν σ

(i)
ν . The dynamics of b

(i)
x decouples

from those of other b
(i)
ν ’s. The initial condition

b
(i)
0 (0) = 1, b

(i)
x (0) = b

(i)
y (0) = b

(i)
z (0) = 0 tells us that b

(i)
x (t) vanishes identically.

The action of D(i) on 1
2
σ
(0)
+ · (σ(i)

µ /2) is

D(i)

[
σ
(0)
+

2
· ς(i)

]
=

σ
(0)
+

2
·
∑

ν,µ=0,y,z

b(i)
ν (M)νµ

σ
(i)
µ

2
, M =

1

2

0 y z 0 0 −iJ

0 −γII 2ω1

−iJ −2ω1 −2γII


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2. Theory

2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

This M is exactly the same as M for 1 + 1-case. We obtain the ODE for b
(i)
ν as

d

dt

b
(i)
0

b
(i)
y

b
(i)
z

 = M t

b
(i)
0

b
(i)
y

b
(i)
z

 , 1 ≤ i ≤ n.

The solution is independent of i and easily found from the one for the 1 + 1-case.

The reduced density matrix of System I is

ρ
(n)
I (t) := TrII ρ

(n) =
σ
(0)
0

2
· Tr

(
n∏

i=1

σ
(i)
0

2

)
+ e−γIt/2

[
σ
(0)
+

2
· Tr

(
n∏

i=1

ς(i)
)

+ h.c.

]

=
1

2

(
1 e−γIt/2 (b0(t))

n

e−γIt/2 (b0(t))
n 1

)
.

Let us define βn(t) := e−γIt/2(b0(t))
n for later convenience. The first factor represents

Markovian relaxation due to direct interaction with environment while the second factor

represents non-Markovian relaxation through System II.
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2. Theory

2.4 Non-Markovianity Measure
It is possible to control non-Markovianity by controlling ω1. To quantify

non-Markovianity, we introduce the trace distance D[ρ(t), ρ′(t)] = Tr|ρ(t)− ρ′(t)|/2 of

ρ and ρ′ and define the measure

N := max
ρ(0),ρ′(0)

∫
Ω+

d

dt
D[ρ(t), ρ′(t)]dt,

where Ω+ := {t ∈ [0,∞)| d
dt
D[ρ(t), ρ′(t)] ≥ 0}.

[H.P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett., 103, 210401 (2009).]

Markovian non-Markovian
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2. Theory

2.4 Non-Markovianity Measure
Consider an initial state

ρ(n)(t = 0, θ) :=
1

2

(
1 e iθ

e−iθ 1

)
⊗
( n∏

i=1

σ
(i)
0

2

)
.

Then at a later time t, the reduced density matrix is

ρ
(n)
I (t, θ) =

1

2

(
1 e iθβn(t)

e−iθβn(t) 1

)
.

The trace distance of two such states is

D[ρ
(n)
I (t, θ1), ρ

(n)
I (t, θ2)] =

∣∣∣βn(t) sin
(θ1 − θ2

2

)∣∣∣.
A pair of pure states in System I with antipodal initial Bloch vectors, ρ

(n)
I (0, θ) and

ρ
(n)
I (0, θ + π), maximizes the integrand dD[ρ

(n)
I (t, θ), ρ

(n)
I (t, θ + π)]/dt of N at ∀t > 0.

N =

∫
Ω+

dt
dD[ρ

(n)
I (t, θ), ρ

(n)
I (t, θ + π)]

dt
=

∫
Ω+

dt
d |βn(t)|

dt
.
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3. Experiment

3.1 NMR Setup

Qubit = Spin-1/2 nucleus.

TMS molecule: System I (29Si nucleus) and System II (n = 12 H nuclei). The

star-shaped TMS has the common J.

Oxygen molecules in the solvent (acetone-d6) act as the magnetic impurities

producing finite γ: Environment.

The Zeeman energy ω
(0)
0 σ

(0)
z /2 + ω

(1)
0

∑n
i=1 ω

(i)
z /2 can be eliminated by employing

the rotating frame.

γI is measured first by “decoupling” System II spins.
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3. Experiment

3.2 NMR Hamiltonian

The Hamiltonian of the TMS molecule is

H = J
12∑
i=1

σ
(0)
z · σ(i)

z

4
+ ω1

12∑
i=1

σ
(i)
x

2
.

when the external RF field is in resonance with the Larmor frequency of the

System II spins. J = 2π × 6.6 rad s−1.

ω1 is a static parameter proportional to the applied RF field strength.

The Hamiltonian physically implements our theoretical model with n = 12.

Non-Markovianity is controllable by adjusting ω1.

Measured values of γ’s are (γI, γII) = (0.41, 0.20) rad s−1.
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3. Experiment

3.3 FID Signals

Set ρI = |+⟩⟨+| at t = 0 and measure Mx(t) :∝ Tr(ρI(t)σx). The signal decays as

time goes (Free Induction Decay).

Tr(ρI(t)σx) =
1

2
Tr

(
1 βn(t)

βn(t) 1

)(
0 1

1 0

)
= βn(t) = e−γIt/2b0(t)

n.

When ω1 is very large, System II spins precess rapidly, which averages out the

coupling J (decoupling). System I spin polarization decays as ∝ e−iγIt/2 in this

limit and relaxation is Markovian.

When ω1 = 0, in contrast, we have non-Markovian limit.

Let us look at experimental data keeping the above observation in our mind.
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3. Experiment

ω1 = 0 [rad /s]
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Red/black curves are real/imaginary parts of normalized FIDs.

Blue curves in experiment are obtained by moving averaging.

Dotted curve in top left shows e−γIt/2.

Green curve with spatial inhomogeneity f (ω1) =
1√
2πσ

exp
(
− (ω1 − ωc)

2

2σ2

)
.
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3. Experiment

3.4 Non-Markovianity

N := max
ρ(0),ρ′(0)

∫
Ω+

d

dt
D[ρ(t), ρ′(t)]dt.
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Solid red curves are β12(t) while dashed blue curves are |β1(t)|.
β1(t) = e−γI t/2[u1 exp(λ1t/2) + 2 exp(λR

2 t/2)
(
uR
2 cos(λI

2t/2)− uI
2 sin(λ

I
2t/2)

)
].
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3. Experiment

3.4 Non-Markovianity

Why dip and peak instead of monotonic decrease?

Note that ω1 does not directly control N . It controls N by modulating the

effective coupling strength between Systems I and II.

There are two time scales 2π/J and 2π/ω1. They compete each other when

ω1/2π ∼ J/2π ∼ 6.6.

When ω1 is small, the oscillation center of β1(t) gradually shifts up as ω1 increases,

which makes contribution of β12 ∼ β12
1 to N less and less as ω1 increases.
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When β1 is lifted up totally above 0, n = 12 enhances non-Markovianity since the

power amplifies the derivative → the dip.

N gradually decreases as ω1 increases since the oscillation gradually disappears.
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3. Experiment

3.4 Non-Markovianity
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Theory curve: Spatial inhomogeneity of ω1 taken into account.

Qualitative agreement with Nexp. No fitting parameters in theory!
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4. Summary and Outlook

We proposed a theoretical model that interpolates between Markovian relaxation

and non-Markovian relaxation.

The total system is made of System I (principal system), System II (a part of

environment interacting with System I) and environment.

Interaction between Systems I and II is controllable by adjusting the external field

applied to System II, by which the relaxation changes from Markovian to

non-Markovian.

Non-Markovianity is measured by N .

We implemented the theoretical model faithfully with NMR. FID signals and N
show qualitative/quantitative agreement between theory and experiment.

N (ω1) shows a peculiar behavior, which can be explained by analyzing FID signals.

Is it possible to replace n spin-1/2 nuclei by a big spin? The Majorana

representation is a technique to visualize a higher dimensional complex vector in

terms of multiple Bloch vectors. How about (Majorana representation)−1?

Is there any practical application of our work?
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Thank you very much for your attention. 謝謝
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