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Motivation

e Quantum states (e.g., qubits) are sensitive and error-prone.

e Quantum surface codes (a kind of stabilizer codes) provide an
implementable topological structure for quantum error-correction.

@ Since the coherence decays quickly, a fast decoding is desired.

@ For an N-qubit surface code, the often-mentioned decoding
algorithms have a complexity O(N?) (by minimum-weight-matching
(MWM)) or O(N log N) (by renormalization-group (RG)).

e We intend to use belief-propagation (BP), which has a complexity
O(NT), where 7 is the number of iteration, 7 = O(loglog N) for a
well BP convergence.

@ The practical complexity and decoding performance of BP, for
decoding surface (or stabilizer) codes, need to be improved.
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Stabilizer codes
@ Gn: the N-fold Pauli group.

Oy ={E=wE ® - ®Ey |we {£1,+i}, E, € {I,X,Y,Z}},

where I =[}9], X =[08], Z=[§ %], and Y =iXZ.
o It suffices to discard w and denote, e.g., if N =5,
IRZRXQIQY =1ZXIY = Z3X3Y5.
o {I,X,Y, Z}N C Gn: all positive-phase elements in Gy, forming a
basis for unitary matrices on c2¥,
o {Snm ,]X;{( C{I,X,Y,Z}"N: a set of N — K independent and
commuting generators, i.e.,
» Sy, cannot be generated by other S,,,/'s; and S,,5m = Sm/Sm.-
@ § < Gy: a stabilizer group generated by S,,’s.
» An F € Sis called a stabilizer. —I®" will not in S.

e C(S): an [N, K]] stabilizer code (a 25-dim. subspace in C2"),

C(S)={|v) e C*" | Fly) =|¢) ¥ F € S}.
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Measurement
e E=F---Ey €{I,X,Y,Z}": an (unknown) N-qubit Pauli error.

S1
e S=[Sm) =1 : ] € {I,X,Y, Z}M*N: 3 check matrix, where
Sm
M > N — K and
Sm = Sm1 -+ Sy € {1, X,Y, Z}V

corresponds to the mth measurement {%, %}

@ For any two Pauli operators F, F’, denote

(F,F'y =0 if F,F' commte, and (I, F') = 1 if F, F’ anticommte.

® z=(z1,...,2y) € {0,1}M: a binary (error) syndrome, where
N
2m = (E,Sm) =Y (En, Smn) mod 2.
n=1
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Decoding

e p, = (pn,pff,p}{,p,zb) the initial distribution of F,, according to

some error model, e.g., for a depolarizing channel with error rate ¢,
pn=(1—¢,€/3,¢/3, ¢/3).

@ A decoding should have, given S € {I, X,Y, Z}M*N > c {0,1}M,
and optionally {p,}~_,,

Dec(S, z, {pn}ﬁle) =K

st. B € ES with a probability as high as possible.
o E' will be applied as the correction.
o We may denote £ = Dec(z) by assuming S and {p,}2\_, fixed.
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Correction radius

wt(E): the weight (number of non-identity entries) of an E € Gy.
@ d: the (minimum) distance of the code C(S) defined as

d=min{wt(E) | E € {I,X,Y,Z}\'S, (E,S,,) =0VYm}.

~a = tq/N: normalized correctable radius (with probability = 1) of

bounded-distance decoding (BDD), where t, = [ 4! |.

~s = ts/N: normalized correctable radius (with probability ~ 1) of
syndrome-based decoding (SBD), based on collecting F/ = Dec(z)
for all z € {0,1}M.
» For most channels, minimizing wt(E) can maximize P(E).
» If E= argmin wt(F), then t5 > t4; but 5 is hard to compute.
EE€GN:
(E,Sm)=zm ¥m

7 = t/N: normalized correctable radius (with probability ~ 1) of
SBD extended by degeneracy, based on collecting all errors in

{EeGn|EecES, E=Dec(z), zc {0,1}M}.

» ¢ is again hard to compute, but it could be v > 0 even if 74 — 0.
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Surface codes (due to Kitaev)

o [N = L% K =1,d = L]] stabilizer codes, with odd L > 3.
@ One qubit formation is encoded (protected) by an L x L lattice.
@ For example, L =3, an [[N =9, K = 1,d = 3]] code:

Check matrix

X XXIT1IIT1I1TITI
S 27721221111
1 O E SRR
Z X Z S=\il=l1172z17T27211
4 5 6 s I T ITXXIXXI
8 1111227172
Z X Z I TTITITIXX
7 8 9 _
X The weight of each measurement < 4.

Logical basis states:

|0) = |0} o< [000000000) + |110000000) + [011011000) + |101011000) + [000110110) +
[110110110) + [011101110) + |101101110) + [000000011) + [110000011) + [011011011) +
[101011011) + [000110101) + |110110101) + [011101101) + 101101101

)
[1) 5 1) o< [111111111) + [001111111) + [100100111) + [010100111) + [111001001) +
[001001001) + |100010001) + [010010001) + [111111100) + [001111100) + [100100100) -+
[010100100) + [111001010) + [001001010) + [100010010) + [010010010)
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Example errors and syndromes
For Sy, = Z1Z5Z37Z4 or X1X5X3X4, the measurement is as simple as

[MWM]: D. S. Wang, A. G. Fowler, A. M.

72 §% S — Stephens, and L. C. L. Hollenberg, Threshold error
ﬁ 1 X3 © rates for the toric and planar codes, Quant. Inf.

Comput. 10, p. 456, 2010.

e
e [[9,1,3]]: since d = 3, it can correct any weight-one errors.
if £ = 7y, then z = (1,0,0,0,0,0,0,0)
Zy |0,) o

|000000000) + [110000000) + [011011000) 4 |101011000) 4 [000110110) + [110110110) + [011101110) +
[101101110) — |000000011) — |110000011) — [011011011) — |[101011011) — |000110101) — [110110101) — |

o) & brg o @

Zg |1y,) o
[111111111) + [001111111) + |100100111) 4 ]010100111) 4 [111001001) + [001001001) + [100010001) +
[010010001) — [111111100) — |001111100) — |100100100) — [010100100) — [111001010) — |001001010) — |

if E = X, then z = (0,1,0,0,0,0,0,0)

Xg |0r,) o |000000001) + [110000001) + [011011001) + [101011001) + [000110111) + [110110111) +
[011101111) + [101101111) + [000000010) + [110000010) + [011011010) + [101011010) +
[000110100) + [110110100) + [011101100) + [101101100)

Xg |1,) o [111111110) + [001111110) + [100100110) + [010100110) + [111001000) + [001001000) +
[100010000) + [010010000) + [111111101) + [001111101) + [100100101) + [010100101) +
[111001011) + [001001011) + [100010011) + [010010011

)
if £ =Y}, then z = (1,1,0,0,0,0,0,0)

Kao-Yueh Kuo and Ching-Yi Lai (Institute oDecoding Quantum Surface Codes via Belief- 2021 Feb. 8/30



The asymptotic correction radius of surface codes

o Let p be a codeword state and EpET be a noisy state, E € Gy.

E
p=ally) (L] +5(0) (O] = EpE'
Meas(EpE') = EpE' with a syndrome z € {0,1}V"%

where the measurement will not affect the state EpET.
@ The decoding is expected to output E with smallest-weight error first.
e For example, [[9, 1, 3]]:

E = Z; is expected when z = (1,0,0,0,0,0,0,0);

E = X is expected when z = (0,1,0,0,0,0,0,0);

E =Y is expected when z = (1, 1,0,0,0,0,0,0); ....
@ Since there are many low-weight stabilizers, v grows as IV increases.

» For an optimum decoding, v — 18.9% = quantum hashing bound
(= quantum Hamming bound for small £ — 0).
» Threshold: the achievable « of some decoding algorithm.
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Often-mentioned decoding algorithms

e Minimum-weight matching (MWM) ® Renormalization group (RG)

X z X z ’
T \_I]IE]EI\_IDEIE am

13 14 15 16 13 1‘“ .
R zuu_ﬂhu\
’ 20
Toric codes:
@ by concatenated decoding with a
@ X errors and Z errors separately decoded; complexity O(N log N).
@ based on the blossom algorithm @ Basic-RG threshold =~ 7.8%.

(Edm3onds, 1965), which has a complezxity @ Improved-RG threshold = 15.2%
O(N”) and can be simplified to O(N”) for (handling RG boundaries additionally).
the case here.

@ Achievable threshold ~ 15.5%. @ BP + Improved-RG threshold

~ 16.4%.

[RG]: G. Duclos-Cianci and D. Poulin, Fast decoders for topological quantum codes, Phys. Rev. Lett. 104, p. 050504, 2010.
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BP decoding of quantum codes

BP, as mentioned, has a complexity almost linear in V.

BP issues for decoding quantum codes:

e Complexity: handling I, X, Y, Z needs a quaternary BP (BP,).
> It is 16 times more complex than the classical binary BP (BP2).
@ Performance: short cycles in the check matrix’s Tanner graph will

affect the decoding convergence & degrade the decoding performance
Our approach:

@ Refine & Improve it as a BP4 with additional memory effect (MBP,):

(Original) BPy "%, Refined BP, TP, MBP, ()

(equivalent to BP4 but (normalize the scalar messages by

with scalar messages)

a; with additional memory effect)
lower complexity

improved performance
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BP: Message Passing on Tanner Graph

@ BP decoding is an iterative message-passing algorithm run on a
bipartite graph (called Tanner graph) defined by S.

XY I
@ For example, S = [Z 7 Y] has a Tanner graph:
@—D (S1): (B, X)+ (B2, Y) =21
: This graph contains a
@]j (S2): (Fr,Z) + (B2, Z) + (E3,Y) = 2 cycle of length 4.

(=) b
------ v
.................. Z

e BPy starts with an initial belief (for the error in each qubit)

pn = ho X 0 pE) (rere=(1- 0, 2,2, 9)) (1)
(given S and z) to compute an updated belief
Gn = (s G+ - 417 (2)

and infer E,, = arg maXwe(1,x,v,2} q};V_
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The Message Passing

e BP; (classical case):

Input

N vigis [JOIGIGIGIGIGIGIGIGIG)]

.. ete.

Pariy hocks LA I [7) [76) [1) [7) [102))

L ete
7

Decoded Feedback

output Tink

@ The connected edges depends on a
(parity-)check matrix H € {0,1}M*¥N

@ Updating the belief at n is like a tree.

k1 other
digits in first ~ )
parity-check set

(1) (3,2) (3,3)

@ BP is close to maximum-likelihood
decoding (MLD) if H is designed
without short cycles.

BP4 (quantum case):

The scenarios is similar, if we draw by S

@A @ 8
@‘.- @A.

But BP4 passes vectors of length 4,
unlike that BP2 passes scalars.

@ This increases the complexity 16 times.

@ The Tanner graph of a large S

inevitably has many short cycles due to
commutation property:

creating strong dependencies between
the messages inputting to a node,
possibly making BP far from MLD.

[Gal]: R. G. Gallager, Low-density parity-check codes (MIT Press, Cambridge, MA, 1963).
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Original BP4: (every message is a vector)
@ To complete the 1st iteration:
variable node n passes to check node m the message

(X Y 7y _
qn—)m - (qmn7 qmn? qmn? qmn) - pn’
and check node m passes to variable node n the message

(] X Y A H
T"m—n = (7mn? Tnzn7rmn7pmn)' with

wo_ By
Trm = Z H D
Bz (m): En=W, n'eN(m)\n
(BN (m) SmInr(m) ) =2m

for W e {I,X,Y,Z}, where N'(m) = {n | Sy, # I'}.
e For any next iteration, q,, .,, = (¢, . qb . q7,) with
IS A ]
m/eM(n)\m
where M(n) = {m | Spmn # I}.

@ To infer En is by q, = (Qn7 Q7)L(7qzzfa qg) with QXV = pr HmGM(n) TTVr‘L/n'
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Refine and Improve

To refine: (to have a lower complexity)

@ An observation: (E1,S,,1) = 2z, + ZQIZQ(EQ, Smn) mod 2
» In other words, the message from a neighboring check will tell us more
likely whether the error E; commutes or anti-commutes with .S,,,;

@ We derived a refined algorithm by, e.g., if S,,, = X, then passing
dnsm = (gL, +aX,) — (gr,, +qZ.,.) is sufficient for computation.

@ Every message becomes a scalar, and the check-node efficiency is
16-fold improved.

Using scalar messages allows simple improvement:
@ Ever message can be normalized by a parameter «; > 0.
@ Wrong beliefs caused by short cycles are usually suppressed.

e We do a derivation by joining gradient descend (GD) & BP rules to
have a BP, with additional memory effect (MBP,).1

(There is another parameter 3 after derivation; but a; is more dominated so we focus on a;)

!BP is like a recurrent neural network (RNN)—we found what we create is like inhibition
between nodes, which enhances the perception capability in Hopfield nets.
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MBP, with a parameter «;

@ The most high-complexity step is refined.
@ The computation in (3) and (4) improves the performance.

(The nonlinear function can be efficiently implemented by Schraudolph’s approximation)

@ Using (3) without (4) is the classical normalized BP (w/0) additional memory.

Algorithm 1 : Quaternary BP (BP,) with message normaliza-
tion and inhibition between nodes controlled by «;.

Input: S € {I,X,Y, ZY""N, {p, = (v, p3 . oy p7) 0o
target z € {0,1}*, and a real parameter ;.
Initialization. For n = 1,2,..., N and m € M(n), let

dnsm = AW = 45
where g% = pf + S and g = 1= i

Horizontal Step. For m = 1,2,..., M and n € N'(m),
compute
Om—sn = (71)zm dn’~>m;
n' €N (m)\n
Vertical Step. For n =1,2,..., N and m € M(n), do:
« Compute

0, = (gt ),
I ol (0)
Ipn—sm = Pn H Tmi—n>
m/eM(n)\m
WSy
H rfn,an ) for W e {X.,Y,Z}.
m'eM(n)\m

— (I—J;ﬂ" )l/a,,

3)

w _ W
Ipn—sm = Pn

Kao-Yueh Kuo and Ching-Yi Lai

o Let
A = Amn (G + G250
/ —Spn\ 11/
qibl—)?ﬂl = Qmn (ZW’ qv‘:v—rm) / (1_§LL)1 /e 5

where W’ € {X,Y,Z} \ S,;, and a,,, is a chosen
scalar such that Q7(L0~)>m + qE‘LIlMYI =1
0 1
o Update: dy,—ym = qnosm — qy(.,lm.

Hard Decision. For n =1,2,..., N, compute

)/ (gl

“4)

I _ I (0)
Gn = Pn HmEM(n) Tmn

(17‘?/ = pEV HmeM(n) T’S’EA’/lrSnnL)? for W € {X7Y! Z}'

Let £, = argmaXy c(z,x,v,z} q.
o Let E=EEy---Ey.
- If (E,Sp) = 2, for m =1,2,..., M, halt and
return “SUCCESS”;
— otherwise, if a maximum number of iterations is
reached, halt and return “FAIL”;
— otherwise, repeat from the horizontal step.

(Institute oDecoding Quantum Surface Codes via Belief-
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The parameter «; (assume «; > 0)

@ Against short cycles: original BP decouples the n — m message and
the m — n message that are passed on the same edge.
> suitable for the case of less short cycles; need a different strategy here.
» Introducing «; (especially in (4)) breaks the decoupling rule and
creates strong memory effect at check-node side (fed back from
variable-node side).
@ Properties of «;, related to the degeneracy:
» A code is said to have strong degeneracy if there are many
measurements with wt(.S,,) < d.
> A larger a; > 1 corresponds to a careful (smaller-step) search and the
memory effect provides suppression, suitable for codes with less
degeneracy.
» A smaller a; < 1 corresponds to an aggregate (larger-step) search and
the memory effect provides momentum, suitable for codes with strong
degeneracy.
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BP as GD, and different schedule

o Classically, BP is like doing a GD opt.: LHS (a) (c). (need «o; > 1)
o If d > wt(Sy,), it has strong degeneracy: LHS (b) (d). (need a; < 1)
@ To take an aggregate update, using a serial schedule also helps.

(a) (b)
(c) (d)

FIG. 2. Illustrations of the energy topology Js of the decoding
problem. (a) A classical code. (b) A degenerate quantum
code. (c) and (d) are the profiles of the topologies along a
dashed lines in (a) and (b), respectively.
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The five-qubit code [[N =5, K =1, d = 3]

@ The code does not have strong degeneracy but has many short cycles:

S =

N~
X~XN
~ X NN
HINN X
SIS

@ This code should be able to correct any weight-one errors.

» BP4 without ; (MBPy4 with a; = 1) cannot correct the error ITTYI.
» BP4 with a; ~ 1.5 successfully corrects all weight-one errors.

[[5.1,3]] code, maximum number of iterations 15 [15.1,3]], BP, with a; uses a fixed € = 0.003

Uncoded
—6—BP,;
—»—BPy,a;=14

logical error rate

—%—BPy,
-8 .
10 ;f’v BP,,
v,)?f - = =~ BDD, ds,=3
1010 5 -4 3 2 1
10° 10 10° 10" 107 01 02 03 04 05 06 07 08 09 1

€ (depolarizing error rate) € (depolarizing error rate)
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The convergence (for decoding the error II11Y'I by setting ey = 0.003)

e Without using «; (equivalent to MBP, with a; = 1), each output belief
gn, n=1,2,3,4,5, keeps oscillating:

L aqubitl qubit 2 qubit 3 qubitd qubit 5
1 1 1 1 1
= —o—1
= —=—X
E z 05 05 05 05
gos +v Y .
- W v
[ OO 0 OO0 O 0 GO-HO0-F & A [La aa aa aa o o 0 & & & @ A
5 10 5 10 5 10 5 10 5 10

number of iterations

e With «; = 1.5, it converges correctly by suppressing the wrong belief:
I I I Y I

qubit 1 qubit 2 qubit 3 qubit 4 qubit 5

16— 1 1 1 1
——1
Z —e—x
2 z 05 05 05
gos M z p 05 b b b
= LY
0Bt & s e S e R4 04 [ e SR S R
5 10 5 10 5 10 5 10 5 10

number of iterations
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The convergence (cont.)

e Define 6,, £ HnGN(m) (QSL% — (j,(}n)z) and plot the change:

(IIIYT causes all z,, =1 and the same d,, V m during iteration; target d,, < 0)

no o; a;=1.5
0.992 1
0.99 0.8
0.988 06
& <

0.986 0.4
0.984 0.2
0.982 0

0 5 10 15 0 5 10

number of iterations number of iterations
(a) without «; (note: the swing is very tiny). (b) with o; = 1.5.

Recall that «; introduces memory-effect:
> This is like a simplified long short-term memory (LSTM) method.
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Surface code: strong degeneracy (an example by L = 7)
@ Consider the error E = X4 Z15216Y23233Y39Y410

o wt(E) =7 > wt(Sy,): it needs ;; < 1 and se

Error pattern Parallel BP4 with o =1
x x x x x x
X or 7 :stabilizer 1 2 3 M 5 & 7 A B B E
X oz z X z X 1z z
X or Z ssyndrome = 1 m A @B B m B
aubit z z x z ¥ z x
2 o .
qubitin X eror Xz X z x z 2
. % u 5 %
qubitin Y error . B 2 2 8w
I: qubitin Z error £ EE
x oz x oz X z z
2 » B @
z z z X z X
© 5 4 4
x x x x

© Panallel BP,

¢ by numl

rial schedule to decode

Serial BP4 with a; = 0.65

z Xz
B = 7 =
z X z
» 2 T
z X oz
EE a2
z oz z
LR 6 ©
x
ke Serial BP,, 0 = 065 with memory.

her of mismatched syndrome bits

BP runs a GD optimization with an energy function
positively correlated to the number of unmatched 7
syndromed bits.

G Pardld BP;
20| |~ G-~ Parallel B, a1, = 0.65 w/o memmory
e Parallel BP, o, — 0.65 with memory
0565 /o memory 7
5 with memory |3 o
N AN
¥
s
P
15
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Surface codes [N = L? K =1, d = L]]

@ Serial MBP,, with small a; < 1, provides good results.

Surface codes, maximum number of iterations 150
T T T T

10°
Parallel BP, no o; §§
Serial BPy, a;=0.65 ggg i o 7
w9 9 ﬁgﬁg !
3 i=5 Sorle ; 3
[ § gx* *p
% i Fhngr 007
I ; §D&X o ]
2 +  d=13 jﬁ U o0 52
£ & d=15 bl ol
= v d=17 :
= 3L ]
0 . oD Noiraat
20
Tt i

10°® 10° 10 107 102 107
€ (depolarizing error rate)
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Improvement is from exploiting the degeneracy
@ Write the logical error rate as:

P(E ¢ ES) = P(E ¢ ES,E # E)

=P(E#E)x P(E¢ES|E+#E) =X

) Ne
no ’

® We plot ¢ and 7= (both the lower the better, and the lower 1=
means the more the decoder exploits the degeneracy):

Two schemes have similar P(E # E) =

Surface codes, maximum number of iterations 150

Parallel BP;, no a;
Serial BP4,,=0.65

n

n "

10 10° 10 10 102 107"
¢ (depolarizing error rate)

The proposed scheme has a much lower Z—g.

Parallel BP,, 10 a;
Serial BP., a,=0.65

d=15
d=17

10 10

10 102 107

€ (depolatizing error rate)
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The convergence behavior

e By viewing the average number of iterations, it shows that the
improvement is achieved by better algorithm convergence, rather than
spending complexity on doing more iterations:

Surface codes, maximum number of iterations 150
T e T 3
*

Parallel BP, 1o a;
Serial BP;, a;=0.65

d=3
d=5
a=7
d=9 : i
d=11
d=13 4
d=15 o
=17

+
o X 6}

S
*®

4 %H+O*0x0

s
o0
2
=

¥
&
1

®O X ¥ o +x%d

1072 107"
€ (depolarizing error rate)
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Further improvement

@ BP can do about 2xBDD [Gal].

@ A good threshold needs about (0.189v/N x 2)xBDD

@ MBP4 can be improved by a technique like Monte Carlo sampling
(sometimes called parallel tempering): we use about 50 instances

(syndrome matched indication)
(©)
—*  MBP, (« =1.00)
(©)
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» No need to combine the solutions from different MBP, instances.
And if it runs in a sequential order, after the first syndrome matched
indication = 1, the remaining instances can be skipped.

> Precisely estimating an o® can again use only one instance.

2

Interestingly, this possible simplification is similar to an observation when using Hopfield nets to do simulated-annealing:
[Hop] J. Hopfield and D. Tank, “neural” computation of decisions in optimization problems, Biological cybernetics 52:(1985):
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Further improvement (surface codes)

@ Achieving a threshold ~ 15.5% to 16% for decoding surface codes.

Surface codes, BP; decoding performance Surface codes, serial BPy (€9=0.013), o] selected
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Further improvement (toric codes)

o If change to toric codes (without boundary conditions),
[N=L?K=2d=L]]witheven L >2, eg., L=4

1 2 3 4

@ Achieving a threshold ~ 17% to 17.5% for decoding toric codes.

Toric codes, serial BPy (€9=0.001), o selected

Toric codes, BP; performance
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Conclusion and Ongoing Work

@ We refine the BP4 decoding of quantum codes to have a lower
(check-node) complexity (16-fold improved).

@ We improve the refined BP, as an MBP,4 with additional memory
effect, keeping the same asymptotic complexity.

e We simulate the MBP,4 decoding performance for the [[5, 1, 3]] code,
surface codes, and toric codes.

o MBPy significantly improves the performance by exploiting the
degeneracy, and it is achieved with a better convergence.

@ The performance can be further improved by choosing an optimum o*
per the syndrome, achieving a threshold ~ 15.5% to 16% for
decoding surface codes and ~ 17% to 17.5% for decoding toric codes.

Ongoing work:
@ Partial parallelism; fault tolerance; estimating «;; proof of
convergence.
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