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Introduction

Quantum states with n physical (measurable) states are realized as
density matrices ρ = (ρij) ∈ Dn, i.e., positive semi-definite matrices with trace 1.

For example, qubits (2-dimensional quantum states) ρ =
(
ρ00 ρ01
ρ10 ρ11

)
.

One can only sees a physical sate if a measurement is applied, say,

|0〉〈0| =
(

1 0
0 0

)
or |1〉〈1| =

(
0 0
0 1

)
.

Quantum state tomography (QST) is the process of
determining a quantum state using measurements
on an ensemble of identical quantum states.

For instance, for an ensemble of identical qubits ρ = (ρij), one can apply
a measurement operator to get the probabilities of the occurrence of the
2 physical states, say, ρ00, ρ11 = 1− ρ00.

How to get the full information?
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Tomography for an n-qubit state

To get the full information, we apply “rotations” to ρ (or we use different
setups of the apparatus), and then measure.

For example, let ρ = 1
2

(
1 + a b− ic
b+ ic 1− a

)
. If U = 1√

2

(
1 1
i −i

)
, then

UρU† = 1
2

(
1 + b c− ia
c+ ia 1− b

)
and U†ρU = 1

2

(
1 + c a− ib
a+ ib 1− c

)
.

We can (and have to) do three different rotations to determine ρ.

In general, for ρ ∈MN , we need N2 − 1 real numbers to determine ρ.

A measurement for each rotation UjρU
†
j of ρ can determines N − 1 real

data (diagonal entries).

To get complete information, the number of rotations UjρU
†
j is at least

(N2 − 1)/(N − 1) = N + 1.
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Implementations

Proposition
For any positive integer N , there exist unitary I = U0, U1, . . . , UN ∈MN such
that any ρ ∈ DN can be determined by the diagonal entries of

U0ρU
†
0 , . . . , UNρU

†
N .

We can use the online IBM quantum
computers to perform the experiments.
IBM online computers can handle circuits
for 5-qubit states ρ in D32.

We need to determine U0, . . . , U2n , which are easy to
implement, say, using local unitary gates R1 ⊗ · · · ⊗Rn.

This is possible, but one has to do more measurements.

Conjecture
By local unitary gates, we need measurements
of 3n rotaions to determine an n-qubit state.

If n = 2, then 32 = 9 steps are optimal.
If n = 3, then 33 = 27 steps suffice.

Can we do better?
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Quantum state tomography with assisting ancillas

Proposition [Ancilla Assisted QST]
Let N be a positive integer. There exist σ ∈ DN , and a unitary U ∈MN2 such
that a quantum state ρ ∈ DN can be determined by the diagonal entries of

U(σ ⊗ ρ)U† ∈ DN2 .

Note: a measurement of U(σ ⊗ ρ)U† provides N2 − 1 real numbers.

If σ = |0〉〈0| ∈ DN , then U(σ ⊗ ρ)U† = U

(
ρ

0

)
U† = RρR†. One

can focus on finding a simple R, which can be extended to “good” U .
For n-qubit states, one can use n assisting ancillas so that tomography
can be done by a single measurement setup.
Of course, we need to find U , which is easy to
implement and produce accurate results?
For instance, when n = 1, U can be chosen
to be the product of a local unitary gate
S ⊗R1 and a control Hadamard gate.
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NMR Quantum Computers

Because in an NMR quantum environment, a state ρ̃ ∈MN has its own
intrinsic time-development due to the interspin J-coupling.

The density matrix in the laboratory frame has the form

ρ(t) = UJ (t)ρ̃U†J (t) ∈MN .
A measurement yields more information (real data).
For ρ̃ ∈ D2, a measurement of ρ(t) ∈ D2 yields information of the (1, 2)
entry (2 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

For ρ̃ ∈ D4, a measurement yields information of the (1, 2), (1, 3), (2, 4),
(3, 4) entries (8 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

It is interesting that we can use U1 as the product of a S ⊗R1 and a
control Hadamard gate.
For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.
Can we make good use of the additional information?
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control Hadamard gate.
For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.
Can we make good use of the additional information?

Chi-Kwong Li Quantum Tomography: Theory and Practice



NMR Quantum Computers

Because in an NMR quantum environment, a state ρ̃ ∈MN has its own
intrinsic time-development due to the interspin J-coupling.
The density matrix in the laboratory frame has the form

ρ(t) = UJ (t)ρ̃U†J (t) ∈MN .
A measurement yields more information (real data).
For ρ̃ ∈ D2, a measurement of ρ(t) ∈ D2 yields information of the (1, 2)
entry (2 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

For ρ̃ ∈ D4, a measurement yields information of the (1, 2), (1, 3), (2, 4),
(3, 4) entries (8 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

It is interesting that we can use U1 as the product of a S ⊗R1 and a
control Hadamard gate.
For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.
Can we make good use of the additional information?

Chi-Kwong Li Quantum Tomography: Theory and Practice



NMR Quantum Computers

Because in an NMR quantum environment, a state ρ̃ ∈MN has its own
intrinsic time-development due to the interspin J-coupling.
The density matrix in the laboratory frame has the form

ρ(t) = UJ (t)ρ̃U†J (t) ∈MN .
A measurement yields more information (real data).
For ρ̃ ∈ D2, a measurement of ρ(t) ∈ D2 yields information of the (1, 2)
entry (2 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

For ρ̃ ∈ D4, a measurement yields information of the (1, 2), (1, 3), (2, 4),
(3, 4) entries (8 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

It is interesting that we can use U1 as the product of a S ⊗R1 and a
control Hadamard gate.

For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.
Can we make good use of the additional information?

Chi-Kwong Li Quantum Tomography: Theory and Practice



NMR Quantum Computers

Because in an NMR quantum environment, a state ρ̃ ∈MN has its own
intrinsic time-development due to the interspin J-coupling.
The density matrix in the laboratory frame has the form

ρ(t) = UJ (t)ρ̃U†J (t) ∈MN .
A measurement yields more information (real data).
For ρ̃ ∈ D2, a measurement of ρ(t) ∈ D2 yields information of the (1, 2)
entry (2 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

For ρ̃ ∈ D4, a measurement yields information of the (1, 2), (1, 3), (2, 4),
(3, 4) entries (8 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

It is interesting that we can use U1 as the product of a S ⊗R1 and a
control Hadamard gate.
For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.

Can we make good use of the additional information?

Chi-Kwong Li Quantum Tomography: Theory and Practice



NMR Quantum Computers

Because in an NMR quantum environment, a state ρ̃ ∈MN has its own
intrinsic time-development due to the interspin J-coupling.
The density matrix in the laboratory frame has the form

ρ(t) = UJ (t)ρ̃U†J (t) ∈MN .
A measurement yields more information (real data).
For ρ̃ ∈ D2, a measurement of ρ(t) ∈ D2 yields information of the (1, 2)
entry (2 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

For ρ̃ ∈ D4, a measurement yields information of the (1, 2), (1, 3), (2, 4),
(3, 4) entries (8 real data). We can measure ρ̃ and U1ρ̃U

†
1 to determine ρ̃.

It is interesting that we can use U1 as the product of a S ⊗R1 and a
control Hadamard gate.
For a single qubit state σ, one can measure ρ̃ = V (E11 ⊗ σ)V † to get 8
real data, more that enough to determine σ.
Can we make good use of the additional information?

Chi-Kwong Li Quantum Tomography: Theory and Practice



Qubit connection in NMR Quantum Computers

In NMR, the information obtained in a measurement depends on the
connection (interaction) of the qubits.

If three qubits are connected in a line, then a measurement yields 16 real
data. One can determine a 2-qubit state ρ ∈ D4 by measuring

(1) U(σ ⊗ ρ)U† ∈ D8.

If three qubits are connected in a triangle, then a
measurement yields 24 real data. One can get more
then enough information by measuring (1)
If we use k-ancillas to determine an n-qubit states,
and the n+ k qubits are fully connected as a
complete graph, then an NMR measurement
yields 2(n+ k)2(n+k)(n+k−1)/2 real entries.

If (n+ k) ≥ 2n−k, i.e., log2(n+ k) ≥ n− k,
then we can determine ρ.

How to determine optimal qubit connection, σ and unitary U such that
one measurement of U(σ ⊗ ρ)U† will determine ρ accurately?
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Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.

Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.

One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.

There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.

A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!

Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice



Summary

We discussed the theoretical and practical issues concerning quantum
state tomography.
Determining an n-qubit sate ρ require the measurements of (many)
“rotated” states

U0ρU
†
0 , U1ρU

†
1 , . . . , UmρU

†
m.

There are challenging theoretical and practical problems concerning the
construction of U0, U1, . . . , Um.
One may use k-ancillas σ and a unitary U so that the n-qubit state ρ can
be determined by one measurement of U(σ ⊗ ρ)U†.
There are interesting problems concerning the construction of σ and U .
The qubit configuration may also plays an important role.
A combination of physics and mathematics insights would be very helpful!
Beginning researchers may get into the problem readily.

Hope that you can help develop the theory or/and conduct experiments.

Thank you for your attention!

Chi-Kwong Li Quantum Tomography: Theory and Practice


