Squeezed Light Applications:

in Gravitational Wave and Quantum State Tomography

Yao-Chin Huang

Supervisor: Ray-Kuang Lee

Part I : Gravitational Wave Detector

• First Detection Event:

- Binary Black Hole (2015, GW150914)
- Binary Neutron Star (2017, GW170817)
- 2017 Nobel Prize in Physics: "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Global Network of GW Telescopes

KAGRA Introduction

An underground GW detector in Kamioka, Japan.
 Prof. Lee group joined KAGRA as collaborator in 2018.
 R&D project: Quantum noise reduction with squeezed light

KAGRA Introduction

O An underground GW detector in Kamioka, Japan.

- O Prof. Lee group joined KAGRA as collaborator in 2018.
- R&D project: Quantum noise reduction with squeezed light

Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction

A broadband suppression of the quantum noise
An improvement of the GW sensitivity

M. Leonardi, E. Capocase, Y. Zhao, N. Aritomi (NAOJ); Chien–Ming Wu, Shu–Rong Wu, Yao–Chin Huang, and Ray–Kuang Lee (NTHU)

Phys. Rev. Lett. 124, 171101 (2020)

Quantum Noise

• Quantum noise originates from vacuum fluctuation.

$$h_{quantum} = \sqrt{h_{rad}^2 + h_{shot}^2}$$

Amplitude fluctuation causes mirror fluctuation at low frequencies and becomes radiation pressure noise.
Phase fluctuation of vacuum fluctuation becomes shot noise at high frequencies.

Squeezed Vacuum State

Squeezed Vacuum State Phase O Squeezed vacuum state used to reduce shot noise in Frequency Dependent Squeezed Amplitude O Shot noise re squeezing in rgo in 2019. O Increase of ed with Phase SQZ. Amplitude Phase Interfer Squeezed Squeezed Observation of G 30 40 60 80 100 300 400 600 800 1k 2k 3k 20 200 Frequency [Hz] Broadband suppression of the quantum noise NEU ILUCE. FILUSE SQUEEZEU SILLE (IEUNCE J.LUD EL.ONIL) Frequency [Hz]

Phys. Rev. Lett. 123, 231108 (2019)

ency [HZ]

Reduce Quantum Noise with Squeezed light

• To reduce shot-noise and radiation pressure noise at the same time, frequency dependent squeezed vacuum states are necessary. The squeezing angle rotates by 90 deg below 100Hz.

Squeezed Light Source @ 1064 nm

- Squeezed vacuum state could be produced through nonlinear interaction process.
- Signal and idler light are correlated photon-pair.

Squeezed Light Source @ 1064 nm

Frequency Dependent Squeezing (FDS)

O Rotation angle is defined that average of filter cavity reflection phase between signal and idler.

103

102

101

Rotate the squeezing ellipse below 100Hz.

Frequency Dependent Squeezing (FDS)

O Rotation angle is defined that average of filter cavity reflection phase between signal and idler.

101

102

103

Rotate the squeezing ellipse below 100Hz.

Noise Fluctuation Distribution

300m Filter cavity

Injection telescope

Homodyne

LO

500

- Noise distribution measured by changing LO phase. 0
- 0 Noise distribution after Filter Cavity:
 - **M** 3.4 dB at high frequency in phase direction 2 dB at low frequency in amplitude direction

NAOJ - TAMA300

Optical Bench

O NAOJ located in Mitaka, TokyoO The length of filter cavity is 300m.

Filter Cavity

Suspension System

KAGRA Sensitivity Budget with FDS

- O FDS will enable "broadband quantum noise reduction" in advanced gravitational wave detectors.
- O Installing the FDS squeezer in KAGRA, detection range will increase more 70%.

Part II : Quantum State Tomography

It is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum state.

Optical Homodyne Tomography

- O Collect all probability distribution $Pr(Q_{\theta}, \theta)$ over the 2π interval.
- O Use reconstruction algorithm (ex: Max. Likelihood method) to convert experimental data into Wigner function or density matrix.

DOI: 10.1103/RevModPhys.81.299

Convolutional Neural Network (CNN): SQ-learner

- O To reduce the dimensionality of the input and send the meaningful feature to the neuron network.
- O Many data series train this "SQ-learner" model with machine learning to optimize parameters.
- O SQ-leaner(<1sec) is faster than Max. Likelihood method(few mins.) during reconstruction process.</p>

1D CNN model built by Hsien-Yi Hsieh

Toward Real-time Quantum Tomography

• Monitor the purity of the quantum state.

O Using SQ-learner to convert the data of optical homodyne detector into Wigner function or density matrix.

Thanks for yours attention

Extra Slides

For aLIGO parameters, about 10dB injection is optimal.

Range v squeezing

- Injecting more squeezing is not always a good thing
- Coupling from antisqueezing can increase the noise

Figure Credit: John Miller

Squeezed Vacuum States of 10dB In NTHU

96 mW incident power of OPO 14.5 mW output power of LO Zero span at 3 MHz

Clearance: 20.856 dB

Dark noise:-92.856 dB

