Nuclear transitions

for quantum control and metrology

Adriana Pálffy

Max Planck Institute for Nuclear Physics, Heidelberg

NCTS Annual Theory Meeting, 17 February 2021

Quantum dynamics with atoms and nuclei

Optical, IR

Mutual control of LASER LIGHT and ATOMS

Revolutionized atomic physics, technology and metrology!

Incentives for x-ray quantum control

Sensing with unprecedented spatial resolution

Special nuclear incentives

FREQUENCY STANDARDS

THE SECOND

1967, hyperfine transition of 6s electron in the $^{\rm 133}{\rm Cs}$ atom. $\sim 10^{-16}$ $\,$ frequency uncertainty

Use a nuclear transition instead? A "nuclear clock"?

NARROW TRANSITION WIDTHS

²²⁹Th $\Delta E/E \simeq 10^{-20}$

ISOLATION FROM ENVIRONMENT

- Better frequency standard
- Variation of fundamental constants
- Oscillator involving the strong force

Outline

I. X-ray coherent control

Thin-film cavities X-ray ping-pong Versatile model

II. Towards a nuclear frequency standard with ²²⁹Th

Nuclear clock Energy determination Electronic bridge

Outline

I. X-ray coherent control

Thin-film cavities X-ray ping-pong Versatile model

II. Towards a nuclear frequency standard with ²²⁹Th

Nuclear clock Energy determination Electronic bridge

Thin-film x-ray cavities

Faster exponential decay 10^{5} spontaneous decay X-ray pulse 10^{4} Fe Detector intensity (arb. units) 10^{3} Ē t . 10^2 χ is the coherent decay enhancement factor 10 6. The collective effects are our "control knob" on the system! 1 2060 40time after excitation (ns)

R. Röhlsberger *et al.*, Science 328, 1248 (2010)

X-ray ping-pong

X-ray ping-pong

X-ray ping-pong

Strong coupling: the interaction between field and system is larger than the system decay rates.

→ Rabi oscillations of the system, photon is absorbed and re-emitted several times.

Coupled cavities

Rich 3-level system, where many processes can occur.

All parameters change with the x-ray incidence angle!

Mimicking the strong coupling regime

Strong coupling: the interaction between field and system is larger than the system decay rates.

► Rabi oscillations of the system, photon is absorbed and re-emitted several times.

Experimental results

The resonance line is split and one can observe Rabi oscillations as known from the strong coupling regime!

Haber, Kong, ... Palffy, Röhlsberger, Nature Photon. 11, 720 (2017)

Experimental results

Green function formalism

- based on Green function for layered system
- can be used for any multilayer structure
- fully quantum quantized electromagnetic field
- Heisenberg equations for nuclear coherences
- input-output formalism to retrieve reflectivity

$$(\mu_0 \omega_p^2 / \hbar) \mathbf{d}_i^* \cdot \mathbf{G}_{1\mathrm{D}} (\mathbf{z}_i, \mathbf{z}_j, \omega_p) \cdot \mathbf{d}_j \approx \frac{1}{4\pi\epsilon_0} \frac{4\omega_0^3 |\mathbf{d}|^2}{3\hbar c^3} i \frac{4\pi}{\varphi} \\ \times [p(\mathbf{z}_i) q(\mathbf{z}_j) \Theta (\mathbf{z}_i - \mathbf{z}_j) + p(\mathbf{z}_j) q(\mathbf{z}_i) \Theta (\mathbf{z}_j - \mathbf{z}_i)]$$

$$J_{lm} = \sqrt{N_l N_m} \left(\mu_0 \omega_p^2 / \hbar \right) \mathbf{d}^* \cdot \operatorname{Re} \left[\mathbf{G}_{1\mathrm{D}} \left(z_l, z_m, \omega_p \right) \right] \cdot \mathbf{d} \qquad \text{Spin-exchange - H}$$

$$\Gamma_{lm} = \sqrt{N_l N_m} \left(2\mu_0 \omega_p^2 / \hbar \right) \mathbf{d}^* \cdot \operatorname{Im} \left[\mathbf{G}_{1\mathrm{D}} \left(z_l, z_m, \omega_p \right) \right] \cdot \mathbf{d} \qquad \text{Decay rate - } \mathcal{L}$$

X. Kong, D. Chang, AP, PRA 102, 033710 (2020)

Starting point for design of photonic devices!

Outline

I. X-ray coherent control

Thin-film cavities X-ray ping-pong Versatile model

II. Towards a nuclear frequency standard with ²²⁹Th

Nuclear clock Energy determination Electronic bridge

A possible nuclear clock

 \rightarrow lowest excitation energy of all ca. 176,000 presently known excited nuclear states

Insensitivity of ^{229m}Th nuclear transition frequency to external perturbations

small nuclear moments

largely immune to systematic frequency shifts:

ultra-precise nuclear frequency standard ? Tests for variation of fundamental constants?

Coupling to atomic shells

For low-energy transition, **internal conversion** is the preferred decay channel!

Radiative decay was never observed, but IC was – first direct evidence of isomer in 2016 L. v.d. Wense, et al., Nature 533, 47-53 (2016)

Spectrum

 $E_m - ?$

Spectrum

The isomer energy

IC calculations to extract the energy value from the measured spectrum

$$E_m = 8.28 \pm 0.17 \,\mathrm{eV}$$

B. Seiferle et al., Nature 573, 243246 (2019)

Electronic bridge

Nuclear decay via IC not possible, energy is not sufficient to ionize a bound electron!

Electronic bridge (EB)

Nuclear decay via IC not possible, energy is not sufficient to ionize a bound electron!

There is no electronic state at the right energy! Virtual state!

Electronic bridge (EB)

Nuclear decay via IC not possible, energy is not sufficient to ionize a bound electron!

There is no electronic state at the right energy! Virtual state! Decays by emitting a photon!

S. G. Porsev et al, PRL 105, 182501 (2010)

... in highly charged ions

Th³⁵⁺ in an Electron Beam Ion Trap

- Open 4f shell, many electronic M1 transitions allowed
- Initial state populated (17% in steady state) by collisions in EBIT
- EB nuclear excitation scheme, allows sub-meV determination of isomer energy
- 1 day scanning campaign

P. V. Bilous, H. Bekker, ..., AP, PRL 124, 192502 (2020)

in VUV-transparent crystals

- Doping of ²²⁹Th introduces defect states
- 2p interstitial F electron moves to 5f dopant Th
- EB scheme allows 2 orders of magnitude faster excitation/quenching.

CaF_2

B. S. Nickerson, M. Pimon, ..., AP, PRL 125, 032501 (2020)

Conclusions

Successful quantum optics at single-photon level in thin-film cavitites – control of x-ray photons

Exploit this for quantum applications/imaging?

Exciting prospectives of a nuclear clock at the borderline between nuclear and atomic physics and quantum optics.

Start building the VUV laser for the 8.3 eV region!

Thanks

Atomic and nuclear quantum dynamics

Petar Andrejic Xiangjin Kong Brenden Nickerson Pavlo Bilous Nikolay Minkov Sergei Kobzak

DFG

Theory Division: Christoph H. Keitel Jörg Evers

LMU

ISOQuant

Heisenberg-Programm

DFG Deutsche Forschungsgemeinschaft

LUDWIG-MAXIMILIANS Ralf Röhlsberger Lars Bocklage

Peter Thirolf Benedict Seiferle Lars von der Wense

European Commission

THANK YOU FOR YOUR ATTENTION!