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Introduction




Narrowest-Linewidth|Single-Mode Biphotons Generated

from Room-Temperature or Hot Media

-

v “Biphoton” is a pair of time-correlated single photons.
After the first photon is detected to start or trigger a
guantum operation, the second one in the same pair can
be employed in the operation as a heralded qubit. \_
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v’ “Single-Mode” means a single frequency mode as
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opposite to multiple frequency modes or components.
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v’ “Room-Temperature or Hot Media” can be nonlinear crystals or atomic vapors, which

are typically heated above RT, as opposite to cryogenic materials or cold atoms.

Photonic qubits of narrower linewidths can make quantum components, such as QM,

QWC and QPG, have higher efficiencies or success rates.



Mechanisms for Generation of Biphotons
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v SPDC with nonlinear crystals. The cavity-assisted SPDC biphotons can have a narrow
linewidth. Depending on the cavity, SPDC can operate in either a single mode or multi-
modes.

v' SFWM with laser-cooled atoms or hot atomic vapors. The linewidth of the biphotons is
tunable and it is limited to the decoherence rate in the system.



Comparison between Different Methods

Best Best Generation Linewidth | Frequency Notes
Linewidth | Rate per Linewidth | Tunability | Tunability
. 3.5x10°
- [1]
Single-Mode SPDC 3 MHz pairs/sIMHZE N.A.

4,300 N A 2 fow GHz The values refer to one of
pairs/s/MHZz!®] o the frequency modes.

4,700(x10%) one order of
pairs/s/MHzl’] magnitude

a few GHz

Multi-Mode SPDC 265 kHz[?

Cold-Atom SFWM 250 kHzE! N.A. Duty cycle < 10%.

Earlier > MH L 1.4x104 -
SEWM _ maanitude (Rb atoms, Is determined by width of
This J T ~40°C) the Doppler broadening.
Work
[1] New J. Phys. 18, 123013 (2018). [5] Phys. Rev. A 92, 063827 (2015).
[2] APL Photon. 5, 066105 (2020). [6] APL Photon. 4, 090804 (2019).
[3] Phys. Rev. A 93, 033815 (2016). [7] Optica 1, 84 (2014).

[4] Nat. Commun. 7, 12783 (2016). [8] Appl. Phys. Lett. 110, 161101 (2017).



SFWM Biphotons Produced from Cold Atoms

The First SFWM Experiment The Best Result to Date
V. Bali¢, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, L. Zhao, X. Guo, C. Liu, Y. Sun, M. M. T. Loy, and S. Du,
Phys. Rev. Lett. 94, 183601 (2005). Optica 1, 84 (2014).
L. Zhao, Y. Su, and S. Du, Phys. Rev. A 93, 033815
(2016).
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= 18 MHz; 670 (x10%) pairs/s/MHz = 250 kHz; 4,700 (x10%) pairs/s/MHz

In literature, all the cold-atom SFWM biphoton sources utilized the counter-propagation
scheme.



SFWM Biphotons Produced from Hot Atoms

The First Hot-Atom SFWM Experiment The Best Result of Hot Atoms to Date
C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. L. Zhu, X. Guo, C. Shu, H. Jeong and S. Du, Appl. Phys.
Loy, and S. Du, Nat. Commun. 7, 12783 (2016). Lett. 110, 161101 (2017).
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In literature, all the hot-atom SFWM biphoton sources utilized the counter-propagation
scheme.



Phase Mismatch in the Counter-Propagation Scheme

For example: Phys. Rev. A 93, 033815 (2016). i _________
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Typically, @, = 2T x6.8 GHz. ‘AE‘ _

The degree of phase mismatch is given by L ‘AI? ‘ (L: the medium length), which deteriorates the
FWM efficiency. The deterioration is severe for a vapor cell of a few centimeter long.



The All-Copropagation Scheme




Experimental Setup and Transition Diagram
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In the counter-propagation scheme with L =7.5cm, L ‘Al?‘ will reduce the generation rate by 1000 folds!

The all-copropagation scheme ensures phase match, and also maintains a low decoherence
rate, which enables a narrow linewidth.



Prevention of SPCM Leakages from the Pump and Coupling Fields
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e An overall ER of ~135 dB to block the strong classical light.
e The pump (coupling) field of 1 mW contributed merely ~100 (~64) counts/s or ~10-* counts/us/trigger

to the SPCMs.

The polarizer provide an
extinction ratio (ER) of
60 (48) dB for the pump
(coupling) field.

The probe etalon blocks
the coupling field with
an ER of 88 dB.

The signal etalon blocks
the pump field with an
ER of 74 dB.




Measurement of the Biphoton (a Pair of Single Photons)
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The probe photon and the coupling field form the EIT system, which predominately
determines the biphoton waveform.



Experimental Data




Representative EIT Spectra Measured with Weak Classical Light
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A smaller coupling intensity results in a narrower linewidth and a smaller peak height, as
expected from the theory.



Coincidence Count

Representative Data of Biphoton Waveforms [y|?
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A smaller coupling intensity results in a longer temporal width and a fewer number of
coincidence counts per accumulation time, consistent with the EIT spectra.



Temporal Width of Biphoton Waveform |i|?
and Linewidth of EIT Spectrum
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The linewidth of EIT spectrum measured with classical light can be an indicator of the
temporal width of biphoton waveform.

The temporal width is limited to (2y), where vy is the decoherence rate in the system.



Spectral Brightness of Biphotons versus Coupling Power

The generation rate or generation rate per linewidth (named spectral brightness) is an important
figure of merit of a biphoton source.
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The experimental data are consistent with the theoretical predictions.



Signal-to-Background Ratio of Biphotons versus Coupling Power

The signal-to-background ratio (SBR) is another important figure of merit of a biphoton source.
A larger SBR indicates that biphotons have higher purity.
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The Cauchy-Schwarz inequality (CSI) for classical light is [ggzp)] /[gg’zs) -g,(flg] < 1.

[gg}]max (the maximum cross-correlation function) ~ SBR. gﬁ? x 2= g,(fg (the auto-correlation function).



Spectral Brightness versus Pump Power and Temperature

The generation rate or spectral brightness can be enhanced by increasing the pump power
or the vapor cell temperature at the expense of the SBR being reduced.

The linewidth of biphotons is maintained at 850 kHz.
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Spectral brightness of our sub-MHz biphotons is comparable with those of SPDC biphotons.



Conclusion and Prospects




Conclusion

e The linewidth of our biphotons can be as narrow as
290 kHz, which is the narrowest among all kinds of
biphotons generated from room-temperature or hot
media.

e The spectral brightness of our 850-kHz biphoton
source can be as high as 3.3x10° pairs/s/MHz, which
IS comparable to the highest spectral brightness of all
biphoton sources.

e Our biphoton source not only surpasses the sources
produced with the hot-atom SFWM in the previous
works, but also competes with the sources produced
with the cold-atom SFWM or cavity-assisted SPDC.
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Prospects

e Biphotons are pairs of time-correlated single photons and can be employed as heralded
photonic qubits in long-distance quantum communication.

e The biphoton source of hot-atom SFWM possesses the merits of (1) a linewidth tunable
for more than an order of magnitude and (2) being capable to set to any frequency in a
continuous range of 0.6 GHz or larger.

e The all-copropagation scheme demonstrated here can maintain the phase-match condition.
Thus, we believe the all-copropagation scheme will become the standard hot-atom
SFWM method.

C.-Y. Hsu, Y.-S. Wang, J.-M. Chen, F.-C. Huang, Y.-T. Ke, E. K. Huang, W. Hung, K.-L. Chao,
S.-S. Hsiao, Y.-H.Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, I. A. Yu, “Generation of sub-MHz
and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme,”
Opt. Express 29, 4632 (2021). [Editors’ Pick]
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Thank you for your attention
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