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Main results
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Part I
New Framework: 
Any classical code to a quantum code.

Part II

Linear distance quantum code in ground 
space of a new 2-local Hamiltonian.
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Quantum coding formalisms



Quantum code’s structure
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Quantum error correction criterion
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• Non-deformation conditions
• Orthogonality conditions



Non-deformation conditions
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Consider diagonal Paulis P
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Quantum code from A’s nullspace
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Make A-matrix
P P

Find a real non-zero solution of 

Non-negative,
Negative,



Quantum coding implication
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A

Theorem 1a: Using any non-zero solution of 
Ax = 0, we can derive a quantum code.



Embedding more logical states

10/21

A-matrix: P P

…....
C1 C2 C3 …….

Dines, Annals of Mathematics, 1926

A1 A2 A3



Embedding more logical states

10/21

A-matrix: P P

…....
C1 C2 C3 …….

Dines, Annals of Mathematics, 1926

A1 A2 A3

Theorem 1b: Using this procedure, we can 
derive quantum codes with linear distance 
and constant rate.



AQEC:Packing in a hypercube
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C1 C2 C3 …….

Each point = a complex vector, components labelled by P
Number of points = number of subcodes



Illustrations (finite n)
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Classical Quantum

Repetition code

Nonlinear (4,8,2) cyclic code

[7,4,3] Hamming code Steane’s code uniquely!

((4,4,2)) CWS code

Nothing as expected

Permutation-invariant states, where product is not basis



Ground states and quantum codes

13/21

Engineer Hamiltonian to suppress noise.

Heisenberg models, (Kitaev’s code, 
compass model / XY model .

Kitaev, Annals of Physics 2006

Li, Miller, Newman, Wu, Brown, PRX 2019
Dorier, Becca, Mila, PRB 2005

Code



QECC in translation-invariant spin-chains 

14/21

Brandao, Crosson, Sahinoglu, Bowen, PRL 2019

Code space

Ground space
Ground space

Code
space



2-local Hamiltonian
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2s+1
P P P

Q Q Q
2s+1 . . .2s+1



Spin transport, spin interaction
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Ground space
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Count all n-strings with no 0’s and no 
(m,-m) substrings. 

All product states

Feasible product states
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A



Embedding more logical states
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A-matrix: P P

…....
C1 C2 C3 …….

Dines, Annals of Mathematics, 1926

A1 A2 A3

Theorem 1b: Using this procedure, we can 
derive quantum codes with linear distance 
and constant rate.



Example: An 8-qudit code
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Error-detecting code

Logical X: 
3rd and 5th spin 2        -2
4th spin 1        -2
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Quantum LDPC with linear distance, 
TQO in 1D?
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Subspace LDPC?

Bravyi-Terhal no-go, d=O(LD-1). In 1D, Stabilizer and 
subsystem codes have d=O(1).
We sidestep this no-go by relaxing stabilizer constraint.

Approximate quantum LDPC in 10-local Hamiltonian.
Ours is 2-local and exact.

Topological order in 1D, but we do not use all of the 
ground space.

Bravyi, Terhal NJP(2009)

Bohdanowicz, Crosson, Nirkhe, Yuen, ACM SIGACT
Symposium on Theory of Computing (2019)

Bravyi, Hastings, Michalakis JMP (2010)
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