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Open quantum systems evolution

e system-ancilla initial factorization: p§4 = p§ ® pg

total Hamiltonian: H®(t) + HA(t) + ho4(t), for 0 <t < 7
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e system’s average energy change:
AE = Tr{p; H%(7)} — Tr{p5 H"(0)} 1/18



Energy change as an information divergence
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The “thermal pullback”

B(AE — AF) > D(y5[|27(+7)
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e the value Tr{®T(v?)} is called efficacy: it often appears in
fluctuation relations (e.g., Albash&al 2013, Goold&al 2015)

e the pullback mapping =z — % is CPTP but (in general)

nonlinear

further discussions&applications in arXiv:2003.08548 3/18



Does the pullback mapping
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remind us of anything?

The Bayes-Laplace Rule

inv. prob. likelihood prior

where H is a hypothesis, D is the result

of observation (i.e., evidence)

postmodern Bayesianism!




Meanings of the inverse probability

e it is the main tool of Bayesian statistics for problems like:

o estimation (e.g.: how many red balls are in an urn?)

o decision (e.g.: is ACME's stock a good investment? should |
buy some?)

o predictive inference (e.g.: weather forecasts)

o retrodictive inference (e.g.: what kind of stellar event
possibly caused the Crab Nebula?)

e it measures the degree of belief that a rational agent should have

in one hypothesis, among other mutually exclusive ones, given the
data
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Noisy data and uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

e suppose that a noisy observation suggests a probability
distribution Q(D) for the data (e.g., the license plate no.)

e how should we update our prior P(H) given uncertain
evidence in the from Q(D)?
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Jeffrey’s rule of probability kinematics

Vanilla Bayes: Generalized Bayes:

P(H|D) = P(D|H)P(H)/P(D)  P(H|Q(D)) =1
Jeffrey’s conditioning® (1965)

P(H|Q(D ZP

inv. prob

D\H)P(H)
=25 pompaE 2P

* Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl's method of virtual evidence (1988) 7/18

Reverse processes and fluctuation

relations in thermodynamics



Reverse processes and the second law
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Crooks’ fluctuation theorem (1999)
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What'’s behind this?

1. thermal equilibrium: initial distribution is P (&) oc e8¢

2. microscopic reversibility: at equilibrium, molecular processes

and their reverses occur at the same rate (viz. probability)
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Do fluctuation relations
(and the second law)
rely on some microscopic

“balancing mechanisms” ?

A hint from Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-
ample of the n-body equations of
motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)

First idea: reverse process as Bayesian retrodiction




Construction of the reverse process

e starting point:

o a stochastic transition rule: ¢(y|x)
o a steady (viz. invariant) state: Y o(y|z)o(z) = o(y)
e define reverse transition by Bayesian inversion at steady state:
o(x) pylz) _ o(y)

e two priors:
o predictor’s prior: p(x)
o retrodictor’s prior q(y)
e two processes:
o forward process (prediction): Pr(z,y) = ¢(y|z)p(z)

o reverse process (retrodiction): Pr(x,y) = ¢(z|y)q(y) e

-»ch(g/ Dl = aly )}c-

p=[f6P)> # ~{RF

e at steady state: prediction = retrodiction

e otherwise: asymmetry
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Measures of statistical divergence

Second idea: fluctuation relations as measures of statistical

divergence between Pr(x,y) and Pr(z,y)

e f-divergences: D;(Pr|Pr) := ZPF(%Q)JC(%)

~ f(r) =In(r) = Dy is KL-divergence (viz. relative entropy)

~ f(r)=r% a#0 = Dy is a Hellinger-Rényi divergence
e introduce probability density functions

o ph(u) =3, 0lu— f(r(z,y))] Pr(z,y)
s ph(u) =3, 0lu— F(2)] Pr(z,y)
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From f-divergences to f-fluctuation theorems

e for f: R* — R smooth and invertible, define g := fo 2o f!

v f(r)=In(r) = g(r) = —r

v flr)=r* = g(r) =

S e

f-Fluctuation Theorem

M?(U) g (u)] B )
phig(u))  fg(w)) = (fTgw))p=1

pr(u)
pr(—u)

~~ for f = In, we have =e"and (e =1

further discussions in arXiv:2009.02849
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Examples

Example: driven Hamiltonian evolution

driving protocol: H(0) — H(t) — H(7)

P ;
‘_\ o H(0) =), cxmma, H(T) =22, my,
'Pt(‘éf)

@(y|z) = 0y (), i-€., ONe-to-one

9qe(s)
‘L(z)s—-—f(f"f o o(z)=d! = o(ylz) = H(zly)
° po(x) — eﬁ(F—em)' qT(y) — BEF —ny)
In this case, for the choice f(r) =1Inr (viz. g(r) = —r),
woy) — i PEED) o) ()

~ Prlx,y) o(z)q(y) q(y)
=B(F — e, + F' + 1) = B(W — AF)
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Example: nonequilibrium steady states

e stochastic process (y|x) with non-thermal steady state o(x)

e thermal equilibrium priors: p(z) = q(z) oc e =P

e fluctuation variable:

P , x) o
v =In PZgZ% = In %% = B(ey — €) + (Ino(y) — Ino(x))
e nonequilibrium potential: V(z) := —Ilno(x) (e.g., Manzano&al
2015)
° <65AE_AV>F =1, but <e’ME>F = “efficacy”

e — nonequilibrium potentials (usually introduced ad hoc) are
understood here as remnants of Bayesian inversion
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Example: quantum processes

e assume p(y|x) = Tr[Il, E(p.)]

“é@”‘?“%‘*—% e according to the formalism of quantum
5 retrodiction:

o ¥:=),0(2)ps

0 Py i= 75 JEDIL,/E(D)

o I, := a(w)%px%

o £() = @{ﬂb;@)(-w;@)] } VY
<« *—éﬂ“?wg‘“é— e Bayesian inverAsiorl carries through directly

p(xly) = Tr[lle E(py)]
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Conclusions

Summary

e role of retrodiction (viz. Jeffrey conditioning) in thermodynamics
and statistical mechanics

e reverse process not as physical time-reversal, but as retrodiction

e fluctuation relations (FRs) as quantitative measures
(f-divergences) of asymmetry between prediction and retrodiction

e FRs not from complex microscopic balancing mechanisms, but

from consistent inference (viz. Bayes-Laplace rule)

e logical origin of the perceived “one-wayness” of time

thank you
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