Surface termination effects for near-surface nitrogen-vacancy (NV) centers in diamond

Jyh-Pin Chou, Song Li, Alice Hu, and Adam Gali

Hungarian Academy of Sciences

Nitrogen-Vacancy (NV) center in diamond

<u>Diamond</u> Chemical inertness Radiation hardness Wide bandgap (5.45 eV)

<u>NV in diamond</u> Quantum bit (qubit) Quantum sensing

Nitrogen-Vacancy (NV) center in diamond

ARTICLES https://doi.org/10.1038/s41928-018-0130-0 electronics

Spatial mapping of band bending in semiconductor devices using in situ quantum sensors

D. A. Broadway ^[]^{1,2,5}, N. Dontschuk^{1,2,5}, A. Tsai¹, S. E. Lillie ^[]^{1,2}, C. T.-K. Lew^{1,2}, J. C. McCallum¹, B. C. Johnson^{1,2}, M. W. Doherty³, A. Stacey ^[]^{2,4}, L. C. L. Hollenberg^{1,2*} and J.-P. Tetienne^[]^{1*}

NATURE ELECTRONICS | VOL 1 | SEPTEMBER 2018 | 502–507

ELECTRIC FIELD SENSING

LETTER

doi:10.1038/nature12373

Nanometre-scale thermometry in a living cell

G. Kucsko¹*, P. C. Maurer¹*, N. Y. Yao¹, M. Kubo², H. J. Noh³, P. K. Lo⁴, H. Park^{1,2,3} & M. D. Lukin¹

Science

REPORTS

Cite as: I. Lovchinsky *et al.*, *Science* 10.1126/science.aad8022 (2016).

Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

I. Lovchinsky,¹ A. O. Sushkov,^{1,2}* E. Urbach,¹ N. P. de Leon,^{1,2} S. Choi,¹ K. De Greve,¹ R. Evans,¹ R. Gertner,² E. Bersin,¹ C. Müller,³ L. McGuinness,³ F. Jelezko,³ R. L. Walsworth,^{1,4,5} H. Park,^{1,2,5,6}† M. D. Lukin¹†

High-confidence detection of individual protein and reveal information about their chemical composition.

To maximum the sensibility, NV sensor should be placed as close as possible to the surface; the surface morphology becomes critical!

Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology

Romana Schirhagl, Kevin Chang, Michael Loretz, and Christian L. Degen

Department of Physics, ETH Zürich, 8093 Zürich, Switzerland; email: degenc@ethz.ch

Annu. Rev. Phys. Chem. 2014. 65:83–105

J. Opt. 19 (2017) 033001

Magnetic coupling

NV preferential orientation.

Appropriate surface orientation can maximum the photon collection efficiency.

NV preferential orientation.

Maintain the negatively charged state of NV.

- Underestimated bandgap of diamond:
 PBE: 4.2 eV → HSE: 5.2 eV
- Excitation: Constrained DFT [Chem. Rev. 112 (2012) 321-370]

Challenges – charged system

Spurious long-range Coulomb interactions between the localized charge and its periodic images.

Challenges

Spurious long-range Coulomb interactions between the localized charge and its periodic images. Point charge correction: the interaction energy can be estimated from the Madelung energy of an array of point charges with neutralizing background

Correction schemes

- M. Leslie and M. J. Gillan
 - *J. Phys. C: Solid State Phys.* **18**, 973 (1985)
 - Madelung energy (Point-Charge correction)

G. Makov and M. C. Payne (MP correction)

- Phys. Rev. B 51, 4014 (1995)
- C. W. M. Castleton and S. Mirbt *Physica B* **340-342**, 407-411 (2003)
- S. Lany and A. Zunger *Phys. Rev. B* 78, 235104 (2008)

□ C. Freysoldt, J. Neugebauer and C. G. Van de Walle (FNV correction) - *Phys. Rev. Lett.* **102**, 016402 (2009)

- H.-P. Komsa and A. Pasquarello Phys. Rev. Lett. **110**, 095505 (2013)
- Y. Kumagai and F. Oba *Phys. Rev. B* 89, 195205 (2014)

Trick

Nano Letters 14, 4772 (2014).
MRS Communications 7, 551 (2017).

Electron affinity

- □ O and F show PEA, H and OH show NEA.
- Oxidation surface is very easy, however, the oxygen induced strain will rough the surface.
- □ Fluorination might form Teflon layer.
- □ O/H/OH mixed surface is an alternative way.
- Nitrogen terminated diamond surface is possible.

- ✤ Nano Letters 14, 4772 (2014).
- ✤ Advanced Materials Interfaces 2, 1500079, 1500079 (2015).
- ✤ Nano Letters 17, 2294 (2017).
- MRS Communications 7, 551 (2017).

Energy levels

- Surface state intrusion occurs in H, O and OH termination cases.
- □ F does not show unwanted state in the bandgap.
- □ O/H/OH mixed surface is still pretty good.
- Nitrogen terminated diamond surface is nice.

- ✤ Nano Letters 14, 4772 (2014).
- ✤ Advanced Materials Interfaces 2, 1500079, 1500079 (2015).
- ✤ Nano Letters 17, 2294 (2017).
- MRS Communications 7, 551 (2017).
- ✤ Carbon 145, 273 (2019)

Four orientations of NV. Blue: N, Grey: C, White: vacancy SEM image of a 460 μ m thick CVD film grown on a circular (113) diamond substrate.

	(100)	(110)	(111)	(113)	
Substrate for growth	Ŭ Ŭ	Č.	l ,	l ,	
Growth condition window		Ľ,	1, i	Ň	
Growth rates	l ,	×5		r i i i i i i i i i i i i i i i i i i i	
Crystalline quality	ră ră	Ň	ŪÇ 3	ЙЙ	
B doping efficiency	Ū,3	Ľ,	×10	×5 🖍	
N doping efficiency	Ū,3	_	ŇĎ	r L	
NV orientation	< 50%	50%	~100%	73%	
Surface terminator effects					
Surface roughness		نې 1		?	
Electron affinity	H, OH, O, F, N	_	H, OH, O, F, N	H, OH, O, F, N	
Surface state intrusion	H,OH,O, F, N	—	H,OH, F, N	H,OH, O, F, N	

- Power Electronics Device Applications of Diamond Semiconductors. DOI: <u>https://doi.org/10.1016/B978-0-08-</u> <u>102183-5.00001-7</u>
- Diamond and Related Materials 56, 47 (2015).
- Diamond and Related Materials 66, 61 (2016).
- Surface Science **337**, L812 (1995).
- ✤ Applied Physics **71**, 5930 (1992).
- ✤ Crystal 7, 166 (2017).

Our works

- ✤ Nano Letters 14, 4772 (2014).
- ✤ Nano Letters 17, 2294 (2017).
- Advanced Materials Interfaces 2, 1500079, 1500079 (2015).
- MRS Communications 7, 551 (2017).

(113) diamond: _____ surface morphology

non-reconstruction, 1×1

(113) diamond: _____ surface morphology

PHYSICAL REVIEW B 67, 195332 (2003)

(113) diamond: _____ Terminators, top view

(113) diamond: _____ Terminators, side view

(113) diamond: Electron affinity

(113) diamond: **Band structure**

Energy (eV

The Brillouin zone

Z

 $\mathbf{\Gamma}$

 b_1

Chemical stability

The -C-O-C- epoxide-like configuration formed on the diamond surface is stable or unstable?

Chemical stability

H/O/OH termination

Summary

- □ A painless way to simulate charged system:
 NV(-) in diamond surface → NV + Ns.
- □ F, mixed O/H/OH, and N would be good surface termination for NV quantum sensing applications.
- Complete oxygen termination of (113) diamond creates positive electron affinity with neither strain on the surface nor in-gap levels which is supposed to be the most prospective host for NV quantum sensors.

Thank you for your attention~

Ádám Gali

Alice Hu

香港城市大學 City University of Hong Kong

Conclusion

□ In general, the physical and chemical properties of (113) are better than other facets.

	(100)	(110)	(111)	(113)	
Substrate for growth	йů	r ja	Ū,	Ū, J	
Growth condition window	Ň	<u>ک</u>	Ū ₽	மீமீ	
Growth rates	1,	×5		ră -	
Crystalline quality	ന്ന്	<u>ک</u>	l ,	மீமீ	
B doping efficiency	ŪÇ\$	Ň	×10	×5	
N doping efficiency	1,	_	ri ci	r L	
NV orientation	< 50%	50%	~100%	73%	
Surface terminator effects					
Surface roughness	Ň	Ň	Ň	?	
Electron affinity	H, OH, O, F, N	-	H, OH, O, F, N	H, OH, O, F, N	
Surface state intrusion	H,OH,O, F, N	-	H,OH, F, N	H,OH, O, F, N	

Oxygenated (113)
 could be a promising
 candidate surface for
 NV quantum sensing
 in diamond.

	(100)	(110)	(111)		
Substrate for growth	й й	Ň	Ū, j		
Growth condition window	Ň	Ň	Ū, Ja		
Growth rates	l ,	×5			
Crystalline quality	ŇĎ		Ū, ja		
B doping efficiency	1,		<u>بن</u> ×10		
N doping efficiency	Ū,	_	ri ri		
NV orientation	< 50%	50%	~100%		
Surface terminator effects					
Surface roughness		نخ 1	ند 1		
Electron affinity	H, OH, O, F, N	_	H, OH, O, F, N		
Surface state intrusion	H,OH,O, F, N	_	H,OH, F, N		

- Power Electronics Device Applications of Diamond Semiconductors. DOI: <u>https://doi.org/10.1016/B978-0-08-</u> <u>102183-5.00001-7</u>
- Diamond and Related Materials 56, 47 (2015).
- Diamond and Related Materials 66, 61 (2016).
- Surface Science **337**, L812 (1995).
- ✤ Applied Physics **71**, 5930 (1992).
- ✤ Crystal 7, 166 (2017).

Our works

Auguneur

- Nano Letters 14, 4772 (2014).
- ✤ Nano Letters 17, 2294 (2017).
- Advanced Materials Interfaces 2, 1500079, 1500079 (2015).
- MRS Communications 7, 551 (2017).

	(100)	(110)	(111)	(113)	
Substrate for growth	Ň Ď	с Ц	l ,	l ,	
Growth condition window	r Š	Č.	Ū,	ŇĎ	
Growth rates	1,3	×5		r i i i i i i i i i i i i i i i i i i i	
Crystalline quality	ră ră		ŪÇ 3	மீமீ	
B doping efficiency	Ū,3		×10	×5	
N doping efficiency	1,3	_	к С С	С ^{У́}	
NV orientation	< 50%	50%	~100%	73%	
Surface terminator effects					
Surface roughness	Č.	i,	<u>نې</u>	Ū,	
Electron affinity	H, OH, O, F, N	-	H, OH, O, F, N	?	
Surface state intrusion	H,OH,O, F, N	-	H,OH, F, N	?	

- Power Electronics Device Applications of Diamond Semiconductors. DOI: <u>https://doi.org/10.1016/B978-0-08-</u> <u>102183-5.00001-7</u>
- Diamond and Related Materials 56, 47 (2015).
- Diamond and Related Materials 66, 61 (2016).
- Surface Science **337**, L812 (1995).
- ✤ Applied Physics **71**, 5930 (1992).
- ✤ Crystal 7, 166 (2017).

Our works

Allguinere

- Nano Letters 14, 4772 (2014).
- ✤ Nano Letters 17, 2294 (2017).
- Advanced Materials Interfaces 2, 1500079, 1500079 (2015).
- MRS Communications 7, 551 (2017).