Possible cubic Dirac point and quadratic Weyl point in e-TaN
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Structure and symmetries in materials with space 194

* Inversion * (3 rotation symmetry

* mirror symmetry * S screw symmetry
» three M) and two M (rotation + half translation along the rotation axis)




Band dispersion around k, =

Energy (eV)

1/ c in materials with space group 194

* The two sublattices are symmetric under the
screw operation.

 The states on the rotation axis do not sense the
difference due to the rotation; each sublattice
acts as if it is a duplicate of the other.

 The bands are “folded back” when they hit the
zone boundary (k, = /c).

* A DP can happen when two such “band foldings”
are close in energy.




Electronic and topological properties of e-TaN
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TABLE I. The parities at the TRIM of =-TaN. It is apparent
that the 2D plane with k. = 0 (containing I' and M points)
reveals nontrivial Zz. The k. = 7 /c plane, on the other hand,
is Z,-trivial.
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Dirac semimetals

e Dirac point (DP): crossing of two doubly degenerate bands

* Mostly, the Dirac bands show linear dispersion.

Na;Bi




Order of Dirac point
in-plane dispersion
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Order of Dirac point versus rotation symmetry
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Classification of stable three-dimensional Dirac byt GO =f(0T, +f () +as(0r,
semimetals with nontrivial topology b, () = g7, when P= £ 1,
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Table 1 | Classification table for 3D topological Dirac semimetals.
C, |P| (ug, +ug 1) f(k ., k) gk, k) 2D topological invariant Hpirac(q) Materials
Cs T, — — — — Mot allowed
Cs g — — — — Mot allowed
Cs T, (e, eR) Pk, vk vop =1 Linear Dirac NasBi'/
Cs 1o (e, e5) Pkk , +yk? nkok _ + k2 vop =0 Linear Dirac
Ca 1, e'F ff nk Pkok% + pkok? M= +1 Linear Dirac Cd;As,'®
Ca o e'ﬂT",e'nE nk.k Bk% + vk* = 2sgn(|f] — |y Linear Dirac
Ce 1, (e7,e%) Pk, vkzk? M= +1 Linear Dirac
Ce To (e,€7) Pk k k2, M= +2 Linear Dirac
Ce T, eE f fk kK2 M= +1 Linear Dirac
Ce 0 e_f, e ik ok }'RE = +2 Linear Dirac
Ce T, s, & nk.k?, pk=. + yk* i = 3sgn(|f| — |y Quadratic Dirac
Ce g es, eF nk?, Pkok3 + pkok* = +2 Quadratic Dirac




Dispersion of the Dirac bands

bulk + surface spectrum
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linear DP: E o< |q| quadratic DP: E « |CI|||2 cubic DP: E |q”|3



Application of an out-of-plane Zeeman field
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Methods to compute the chiral charge of a Weyl point
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1. Wilson loop
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Methods to compute the chiral charge of a Weyl point
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Methods to compute the chiral charge of a Weyl point

3. Ratio of the rotation (screw) eigenvalues of conduction and valence bands (u,/u,)

For C,,, invariant systems
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PRL 108, 266802 (2012)

This method applies when the Weyl points
are located at the rotation (screw)-invariant
momenta (e.g. on the rotation axis).

Uc
Uy

»  increasing k

Since m cannot exceed six in a real material,
there seems to be an upper limit of chiral
charge (C < 3).




Upper limit for chiral charge?
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TABLE II. The calculated phases (#), in unit of 5=, of the

screw eigenvalues (A = e'?) of the eight bands labeled in Fig.
3(a). Difference in n between two crossed bands indicates the
chiral charge of the WP.
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n - _ .5.— 22 0 3 3 0

A e '3 \e's Je's e'F 1 -1 -1 1

AN A

N’



Upper limit for chiral charge?
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 The value of C so obtained is simply
the chiral charge mod m.

 There (in principle) should not be an
upper limit for the chiral charge.
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TABLE II. The calculated phases (#), in unit of ==, of the

screw eigenvalues (A = €'?) of the eight bands labeled in Fig.
3(a). Difference in n between two crossed bands indicates the
chiral charge of the WP.
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Constraint from the topological nodal-lines

Candidate system Space group Relevant symmetry Shape of line nodes Number of line nodes
H©® 59 M} or M} open straight 2
HY + §H"V(k) 11 M; open 1
BaTaS 194 M: open straight 3
SrlrO; 62 )" and Gy, closed loop 1
PHYSICAL REVIEW B 95, 075135 (2017)
BaTaS;

The off-centered glide symmetry protects the topological 06

nodal-lines (TNLs) at k, = m/c plane for materials with 3, g-; ‘

space group 194. S ol

£ 02}
-0.4
 The winding number (Berry phase) of each TNLis 1 (2m).

* Viewing the crossing point A as an effective “topological
point”, we speculate that the phase change would be
(each TNL contributes 7 /3)

PHYSICAL REVIEW B 93, 085427 (2016)



Phase difference when crossing A point
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Comparison study: Na;Bi
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The symmetry representations in space group 194
cannot guarantee a Weyl point with |C| = 4.




Cubic Dirac point as a single point?

Classification of stable three-dimensional Dirac
semimetals with nontrivial topology

Bohm-Jung Yang' & Naoto Nagaosa"

IUNICATIONS | 5:4898 | DOI: 10.1038/ncomms5898

Table 2 | Classification table for 3D Dirac SMs with a single Dirac point.

C, |P| Up: fk ., k) gk, k) Hoira (@) Material

C- T, e kzF;:I:I(kx,y} - :'F;:' (ky) ok, + Pk, Linear Dirac Distorted spinels'®
Cs T - . - Not allowed

Ca T et# Fi? (key) — ikoF5 (key) ok Linear Dirac BiO,"®

Ce T et kzFP:'(kH_F) +iFy (key) xk Linear Dirac

Co T et k2R (kxy ) + iF5” (kxy) Fy” (key) +iF5 (key) Cubic Dirac

* Asingle Dirac point is located at time-reversal
invariant momenta (TRIM).

* Thisis a consequence of a four-band model

and is not universally true.




Four-band model for a Dirac point

parity: P = +740r 1, (even) P = +7, (odd)
e
* The operation of P maps states * The operation of P maps states
belonging to the same band. belonging to different bands.
e apair of DPs * single DP at the TRIM

Cubic Dirac point can be present only when P = +7,,
and must appear as a single point at the TRIM.




Eight-band model and beyond

PHYSICAL REVIEW B 93, 085427 (2016)
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* |n our case, the four-band model is
not enough to describe the behaviors
around the DP.

* Similar band crossings are also found in
(SG-194 phase) PbTaSe,.

* For binary (ternary) SG-194 materials,
there exist DPs in a eight-band (twelve-
band) manifold.

* |In an eight-band model, P = +1, can
hold for DPs away from the TRIM (but
remaining on the rotation axis).




Summary

In materials with space group 194:
> the screw symmetry gives rise to “band folding” at 4 (0,0, /c).
» TNLs are present on k, = m/c plane and cross at A.

» When two such “folded bands” are close in energy, a cubic Dirac point can take place.

 Under the application of out-of-plane Zeeman field, high-order Weyl points may
appear due to accidental band crossing. The chiral charge of such Weyl point is
connected to the chirality of the TNLs.

* In &-TaN, as well as e-NbN, high-order Weyl points (C = +4) are found and confirmed
by several numerical schemes.

* Eight-band model is required to describe such a Dirac point and the split Weyl points.
More interesting yet complicated behaviors are expected in ternary (and beyond) 194-
materials .




