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Possible cubic Dirac point and quadratic Weyl point in 𝜀-TaN 



• feature of electronic structure in materials with space 
group 194 
 

• order of Dirac point and Weyl points with high chiral 
charge 
• Computational results 
• discussions 

Outline 



Structure and symmetries in materials with space 194 

• inversion 
 

• mirror symmetry  
 three 𝑀|| and two 𝑀⊥ 

• 𝐶3 rotation symmetry 
 

• 𝑆6 screw symmetry  
      (rotation + half translation along the rotation axis) 

𝜀-TaN 



Band dispersion around 𝑘𝑧 = 𝜋 𝑐  in materials with space group 194 

sublattice A 

sublattice B 

• The two sublattices are symmetric under the 
screw operation. 
 

• The states on the rotation axis do not sense the 
difference due to the rotation; each sublattice 
acts as if it is a duplicate of the other. 
 

• The bands are “folded back” when they hit the 
zone boundary (𝑘𝑧 = 𝜋 𝑐 ).  
 

• A DP can happen when two such “band foldings” 
are close in energy. 

N TaB TaA 



Electronic and topological properties of 𝜀-TaN 

𝑘𝑧 < 𝑘𝑧
𝐷 𝑘𝑧 = 𝑘𝑧

𝐷 𝑘𝑧 > 𝑘𝑧
𝐷 

Ta N 

𝑎 = 𝑏 = 2.95 Å ; 𝑐 = 11.36 Å 



Na3Bi 

Dirac semimetals 

• Dirac point (DP): crossing of two doubly degenerate bands 
 

• Mostly, the Dirac bands show linear dispersion. 



linear DP 

quadratic DP 

cubic DP 

Order of Dirac point 

𝐸 ∝ 𝑞||  

𝐸 ∝ 𝑞||
2

 

𝐸 ∝ 𝑞||
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in-plane dispersion 



Order of Dirac point versus rotation symmetry 



• Because of the finite slope at 𝑘 = 0, linear term 
must exist. 

• Because of the finite slope at 𝑘 = 0, linear term 
must exist. 
 

• The finite curvature (even at 𝑘 = 0) indicates 
quadratic term is also present and comparable 
with the linear term. 

• Because of the finite slope at 𝑘 = 0, linear term 
must exist. 
 

• The finite curvature (even at 𝑘 = 0) indicates 
quadratic term is also present and comparable 
with the linear term. 
 

• The presence of two turning points indicates 
the cubic term is not negligible. 

linear, quadratic, or cubic DP? 

Dispersion of the Dirac bands 

cubic DP: 𝐸 ∝ 𝑞||
3

 linear DP: 𝐸 ∝ 𝑞||  quadratic DP: 𝐸 ∝ 𝑞||
2

 

𝑘𝑦 = 0 



Application of an out-of-plane Zeeman field 



• Calculating the Berry phase (𝜑) of each loop 
 

• Since the loops cover a closed surface, the Berry phase 
can only shift by an integer multiple of 2𝜋. 
 

• This multiple is equal to chiral charge of the Weyl point. 

1. Wilson loop 

Methods to compute the chiral charge of a Weyl point 

𝐶 = −1 



The change in Chern number across the 
Weyl point indicates the chiral charge. 

2. change in Chern number 

Methods to compute the chiral charge of a Weyl point 

𝐶 𝑘𝑧 =
1

2𝜋
 Ω 𝑘𝑧 𝑑

2𝑘
𝐵𝑍

 

It requires that the effective 2D system 
(fixed 𝑘𝑧) be gapped. 



3. Ratio of the rotation (screw) eigenvalues of conduction and valence bands (𝑢𝑐 𝑢𝑣 ) 

chiral charge 

Methods to compute the chiral charge of a Weyl point 

This method applies when the Weyl points 
are located at the rotation (screw)-invariant 
momenta (e.g. on the rotation axis). 

Since 𝑚 cannot exceed six in a real material, 
there seems to be an upper limit of chiral 
charge (C ≤ 3). 

increasing k 

𝑢𝑐 

𝑢𝑣 



Upper limit for chiral charge? 

𝑒𝑖𝐴 = 𝑒𝑖𝐵 → 𝐴 = 𝐵 × 

The value of 𝐶 so obtained 
is the chiral charge mod 𝑚 . 

× +1 

−1 

+2 −2 

−4 



Upper limit for chiral charge? 

𝑒𝑖𝐴 = 𝑒𝑖𝐵 → 𝐴 = 𝐵 

• The value of 𝐶 so obtained is simply 
the chiral charge mod 𝑚. 
 

• There (in principle) should not be an 
upper limit for the chiral charge. 

× 

+1 

−1 

+2 −2 

−4 

𝐴 = 𝐵 ± 2𝑛𝜋 



• The winding number (Berry phase) of each TNL is 1 (2𝜋). 
 

• Viewing the crossing point 𝐴 as an effective “topological 
point”, we speculate that the phase change would be 𝜋 
(each TNL contributes 𝜋 3 ) 

The off-centered glide symmetry protects the topological 
nodal-lines (TNLs) at 𝑘𝑧 = 𝜋 𝑐  plane for materials with 
space group 194. 

Constraint from the topological nodal-lines 

BaTaS3 



Phase difference when crossing A point 



Comparison study: Na3Bi 

a linear DP at the Fermi level 
The symmetry representations in space group 194 
cannot guarantee a Weyl point with 𝐶 = 4. 



Cubic Dirac point as a single point? 



𝑃 = ±𝜏0 or ±𝜏𝑧 (even) 

• The operation of 𝑃 maps states 
belonging to the same band. 

• a pair of DPs 

𝑃 = ±𝜏𝑥 (odd) 

• The operation of 𝑃 maps states 
belonging to different bands. 

• single DP at the TRIM 

Four-band model for a Dirac point 

Cubic Dirac point can be present only when 𝑃 = ±𝜏𝑥 
and must appear as a single point at the TRIM. 

parity: 



Eight-band model and beyond 

• In our case, the four-band model is 
not enough to describe the behaviors 
around the DP. 
 

• In an eight-band model, 𝑃 = ±𝜏𝑥 can 
hold for DPs away from the TRIM (but 
remaining on the rotation axis). 

• Similar band crossings are also found in 
(SG-194 phase) PbTaSe2. 
 

• For binary (ternary) SG-194 materials, 
there exist DPs in a eight-band (twelve-
band) manifold. 



Summary 

• In materials with space group 194: 

 the screw symmetry gives rise to “band folding” at 𝐴 (0, 0, 𝜋 𝑐 ).  

 TNLs are present on 𝑘𝑧 = 𝜋 𝑐  plane and cross at 𝐴. 

 When two such “folded bands” are close in energy, a cubic Dirac point can take place. 
 

• Under the application of out-of-plane Zeeman field, high-order Weyl points may 
appear due to accidental band crossing. The chiral charge of such Weyl point is 
connected to the chirality of the TNLs. 
 

• In 𝜀-TaN, as well as 𝜀-NbN, high-order Weyl points (𝐶 = ±4) are found and confirmed 
by several numerical schemes. 
 

• Eight-band model is required to describe such a Dirac point and the split Weyl points. 
More interesting yet complicated behaviors are expected in ternary (and beyond) 194-
materials . 


