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Kondo chain 

We study a dense  regular array of magnetic moments 
interacting with conduction electrons.  
 
Single moment is screened by the electrons if JK >0. The 
sign matters!  
 
Already 2 spins interact through polarization of the electron  
cloud – Ruderman-Kittel-Kasya-Yosida (RKKY) interaction  
~ (JK )2 . Sign does not matter! 





Standard Phase Diagram 
• Modified Doniach’s phase diagram: Kondo 

screening (multiple scattering on the same spin) 
competes with RKKY interaction. 
 

• Q stands for quantum frustration  
 



1D Kondo lattice: RKKY always wins 

Schematic phase diagram from Khait et.al. 2018 
HTLL stands for Heavy Tomonaga-Luttinger liquid.  



The large-N approximation – the SU(2) symmetry is extended to SU(N), 
the slave boson approach is used.  

From Khait et.al. 2018  



 Our results 
In 1D the KL phase diagram is very rich, richer than it has been 
envisaged before. 
 
It depends on  
 
A.) Symmetry: SU(2) vs. SU(N) or vs. U(1). Large symmetry  
pulls towards Fermi liquid, small one – to short range spin order. 
 
B.)  Band filling. At ½, ¼, ¾ it is insulating spin liquid, otherwise 
for SU(2) it either a metal or 4kF CDW. 
 
C.) Direct Heisenberg exchange JH:  
for JH  >> Jkondo  we have a fractionalized spin liquid with odd-
frequency pairing.  
 



Numerics (McCulloch et.al. 2002, Khait et.al. 2018)  was done for JK /t 
~ 1.  
 
For smaller JK /t  we suggest an analytic approach.  

Our Results for SU(2) 

Strictly at n= ½, ¼, ¾ - insulator, in the vicinity  it is  
TLL  with gapped charge and spin excitations.  
Further on  –  
“helical metal” – 4kF  CDW with gapped spin sector. 



More interesting physics emerges at strong 
Heisenberg exchange. 

Kondo-Heisenberg chain:  
Spin S=1/2 chain interacting with 1D electron 
gas. 
 

Zachar, Tsvelik, 2003 

JK << JH 

The continuum limit: JK << JH and Fermi energy. 
 
 
The electron band is incommensurate with the lattice: kF  not equal π/2. 
 

Phys. Rev. B 94, 165114 and  205141 (2016). 

 



Our approach – semiclassical 
approximation 

 Separate fast from slow degrees of freedom and integrate out 
the fast ones. 
 

 The formalism: path integral for spins and fermions. 
 Under the path integral spins are treated as vector fields with 

the Wess-Zumino Lagrangian:  



Semiclassical approximation (continued) 

 First step: at low T spins are almost ordered. 
 Choose spin configuration which minimizes energy.  

 
 Integrate over fluctuations around this 

configuration. 
 Result: Ginzburg-Landau action for slow variables. 



                                Spin configuration 

This is the form of spin field in the path integral. We will integrate over 
  
Sn (t)    with Berry phase. It is assumed that [Sn (t)]2  =s2 , 
 
and this field  is smooth.  
 
To satisfy this condition we need   
 
m2  << 1, ( ei ,ej ) = δij  - unit vector fields, q= 2kF  . 



          Acceptable spin configurations 

1. Collinear antiferromagnet – ½ filling. 
 
 
 

2. 2 spins up 2 – down -1/4 filling.  
 
 
 

3. Non-collinear spiral – general filling: 

 



Simplest case: ½ filling 

Antiferromagnetic spin configuration acts as a periodic potential and opens 
a spectral gap at kF = π/2. 



 Our approach: semiclassical approximation for spins 

Preparatory step: linearization of the band spectrum: 

The most serious part of the interaction is backscattering: 

The oscillations must be absorbed into the spin configuration:  



   The derivation: ½ filling and its vicinity 

We use non-Abelian bosonization procedure where the action of free 
s=1/2 fermions is represented as a sum of the Gaussian model and 
SU1 (2) Wess-Zumino-Novikov-Witten model of SU(2) matrix field 
h(t,x): 

g = i(σn) 

             This is the spin Berry phase.  



         The derivation: ½ filling and its vicinity 
 The Polyakov-Wiegmann identity:  

Use it and refermionize:  

Now integrate over these massive fermions and massive 
field m : 



 Sigma model for the spin excitations 

Or in the canonical form:  



                           Exact solution 

 O(3) sigma model is one of the most beautiful field 
theories. 
 

 Here strong interactions come solely from 
geometrical constraint on the field: n2  =1. 

 The result is dynamical mass generation . The 
spectrum is coherent triplet with gap ∆. 
 



          The energy scales 

We see that formally the gap is exponentially small in 1/|JK |, like 
Kondo temperature, but it is independent of the sign!  

At ½-filling we have insulator with charge gap ~JK and short range  

AF correlations (spin liquid). 



              Vicinity of ½-filling 



 Integrating over field n we get the Hamiltonian of repulsive Fermi gas: 

Fermi momentum: k*F  =π/2 � kF  - large Fermi surface.  
 
                           Excitations – all gapless. 
 

   



                   Generic filling 

Following the same steps we derive a massive sigma model  
for SU(2) g-matrix field:   

This is a version of anisotropic Principal Chiral Field model, the excitations 
are  massive tensor particles Ψα,σ , α,σ = +1/2,−1/2  
(Polyakov, Wiegmann 1983). 
 
Gapless modes – “rotated” or dressed fermions (R,L)α = gαβ (R,L)β   
with particular helicity.  



                          ¼ filling 

 It is an insulator with a tendency to dimerization. The 
sigma model:  



Excitations. ¼-filling 

 1/N-approximation: excitations are vector particles. 
   
 It is possible that the system dimerizes (Xavier et.al. 

2003 – numerics). 



                      Conclusions 

 Although Kondo chain is described by very simple 
model, its phase diagram is complicated even when 
one assumes SU(2) symmetry. 

 It includes insulators, para- and ferromagnetic 
metals, charge density waves. 
 

 When direct Heisenberg exchange is added there is 
a phase with composite CDW and SC quasi long 
range order.   



The problem 

 May we have a metallic state in D>1 where the Fermi 
surface volume is  not related to the electron density, as 
it appears to be in the pseudogap phase of the cuprates? 
 

 Senthil, Sachdev and Vojta (2005): yes, but the GS must 
have a nontrivial topology and fractionalized excitations.  
 

 Their approach: gauge theories. Alas, too many 
uncontrollable steps. 

 My approach: consider a quasi-1D model, treat the 
strongest interactions nonperturbatively in 1D and the 
rest of them approximately in controlled steps. 



D >1 array of Kondo-Heisenberg chains 

This would be the most realistic arrangement, like in La2-x Bax CuO4 (x=1/8). 

I will discuss a less realistic model first (Tsvelik, 
2016): 

t t 

J 

JK 

Spins 

1DEG 

It gives us answers to all questions posed in the beginning.  



The core model: Kondo-Heisenberg chain 

 

The 1st step is to  linearize the spectrum of 1DEG: 

This model constitutes an elementary block for a 2D or 3D model  
of fractionalized FL. 
I’ll derive its continuum limit using non-Abelian bosonization. 



Bosonization of 1DEG 

 

Belong to the SU1 (2) Kac-Moody algebra for spin currents and  

belong to the SU1 (2) Kac-Moody algebra for charge currents: 

The Hamiltonian density of the 1DEG (free fermions) is  



Heisenberg antiferromagnetic S=1/2 
chain 

At high energies we see individual spins. 
 But it is not them who is active at low energies. 

At energies << JH  we see collective excitations - spinon waves traveling in opposite directions: 

Each spinon carries spin ½, 
The spectrum can be split into  
Right and Left movers. 



Bosonization of the S=1/2 Heisenberg 
chain 

 



Formation of the spin liquid 
 Since 1DEG and Heisenberg chain are incommensurate, the 

staggered components of the magnetizations do not couple. 

The strictly marginal interaction of currents of same chirality can be neglected. 

These models are exactly solvable (N. Andrei, 1980). 



Spin gap formation in a single chain.  

 When kF not equal to π/2,  spinons from 1DEG pair with spinons of 
opposite chirality from spin chain. The result is TWO branches of 
gapped spinons.  

Exact solution, N. Andrei, 1980 



Order parameters of KH chain 

 

A is a numerical amplitude and g is an SU(2) matrix. 



Few facts about WZNW models 

 

The action of the SU1 (2) WZNW model can be written 
 in terms of SU(2) matrix field: 

However, it can also be written in terms of the free bosonic field: 

Then important objects are holomorphic (dependent on z = τ �ix/vF ) and  
antiholomorphic fields: 



Robustness against local perturbations 

 All local primary fields both for 1DEG and 
Heisenberg chains can be factorized. 
 

 Chiral parts of spin operators pair with parts with 
opposite chirality from 1DEG. Therefore the 
perturbations cannot acquire a vacuum average and 
thus lift the ground state degeneracy.  



The operators can be factorized: 

 

For instance, the WZNW matrix field for the Heisenberg model and 
the 1DEG fermions 

can be written   

From z-quanta of various WZNW one can construct nonlocal OPs of the spin 
liquid:  



Building D>1 model. 

 Electrons tunnel between the  chains. This tunneling will also 
generate an exchange between the Heisenberg chains.  

In Random Phase approximation we have  

There are quasiparticle poles when  

Electron and hole pockets appear.  



The Green’s functions 
 The single particle Green’s function is calculated from 

the symmetry considerations using a minimal information 
from the exact solution (Essler, Tsvelik, 2001):  

The Luttinger theorem is fulfilled through zeroes: 



The single particle Green’s function for a single chain calculated  from the 
exact solution (Essler, Tsvelik, 2001):  
 

 



The plot of the quasiparticle weight near  
kx = kF for t0 (vH /vF )1/2 /∆ = 5  
and vF /vH = 0.1. The vertical axis is ky b,  
the horizontal is q = (kx − kF )(vH vF )1/2 /∆.  
 
 

In Random Phase approximation  
we have  

There are quasiparticle poles when  

When interchain tunneling is allowed, spinons and holons recombine  
into quasiparticles which propagate in D>1. The q.-p. dispersion is in 
the gap. 

That is how small Fermi surface is 
formed! 
The fractionized particles still exist at 
finite energies. 



The plot of the quasiparticle weight near  
kx = kF for t0 (vH /vF )1/2 /∆ = 5  
and vF /vH = 0.1. The vertical axis is ky b,  
the horizontal is q = (kx − kF )(vH vF )1/2 /∆.  
 

The quasiparticle residue Z as  
a function of  
q = kx(vH vF )1/2/∆ for  
(from top to bottom)  
vF /vH = 3, 1, 0.1.  
 



Stability of the RPA solution 

 The quasiparticle FS can be destroyed by two 
processes. 
 

 A. ) There is interaction between the gapless 
collective modes which leads to 3D order.  

 - The coupling between the OPs from different 
chains is an independent parameter:  Tc << EF . 

 B.) The QPs can couple to the collective modes: 
 - not possible, the OPs wave vectors do not 

connect particle and hole FSs.  



Is the ground state topological? 

 Forget for a moment that the charge modes interact. 
 Then the GS of spin sector of each chain is 4-times 

degenerate. Hence the GS of the array is 4N –
degenerate. 

 This degeneracy cannot be probed by any local 
operator. 

 In reality this picture holds only approximately, since 
the charge sector orders at some T. 



Ginzburg-Landau functional 

 Since OPs contain localized spins, to arrange the 
Josephson coupling one needs spin exchange 
besides the tunneling:  

To get the Fermi pockets one needs t ~∆, but since the exchan  
 is an independent 
parameter, the transition temperature  
may be << than the Fermi energy of QPs. 



Ginzburg-Landau theory – similar to He3 -A  

 The order parameter is SU(2) matrix and can be parametrized by three 
angles or by angle φ and a unit vector  

Magnetic field will not destroy the OP, it will just rotate it from SC to CDW. At H > Hc1  the 
flux is equal to the topological charge of n-field.   



Conclusions 

 One may have a metallic state where the FS volume is not 
related to the electron density (in the given case VFS  =0). 

 The Luttinger theorem is fulfilled due to the zeroes of G(0,k). 
 For the KH model it is shown that this state is topologically 

nontrivial, as was suggested by Senthil et.al (2005).  



The schematic picture of the bosonized 
model 

Red arrows - chiral 
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