Interesting Dynamics Interplay with Symmetry, Topology and Entropy

Hui Zhai

Institute for Advanced Study
Tsinghua University
Beijing, China

Quantum Simulation and Numerical Studies in Many-Body Physics Hsinchu

December 2016

Complex Dynamics

Simple Dynamics

Simple Dynamics

Fundamental and Universal

Simple Dynamics

Fundamental and Universal

Symmetry, Topology and Entropy

Symmetry

Scale Invariance

$$i\hbar\frac{\partial}{\partial t}\Psi = -\sum_{i}\frac{\hbar^{2}}{2m}\nabla_{i}^{2}\Psi$$

Scale Transformation

$$egin{pmatrix} \mathbf{r}_i
ightarrow \Lambda \mathbf{r}_i \ t
ightarrow \Lambda^2 t \ \end{pmatrix}$$

$$\frac{1}{\Lambda^2}$$

$$\frac{1}{\Lambda^2}$$

No other energy scale except for the Fermi energy

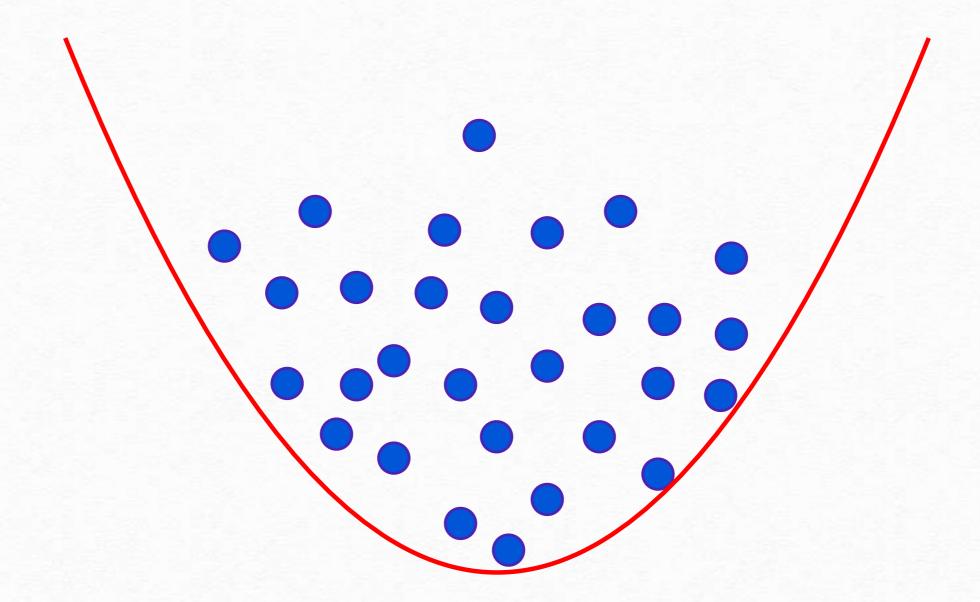
Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/ fermions at any dimension	No other length scale except for density
Unitary Fermi gas at three dimension	Density and a_s $a_s=\infty$
Tonks gas of bosons/ fermions at one dimension	Density and g_{1D} $g_{1D}=\infty$

Universal behavior:

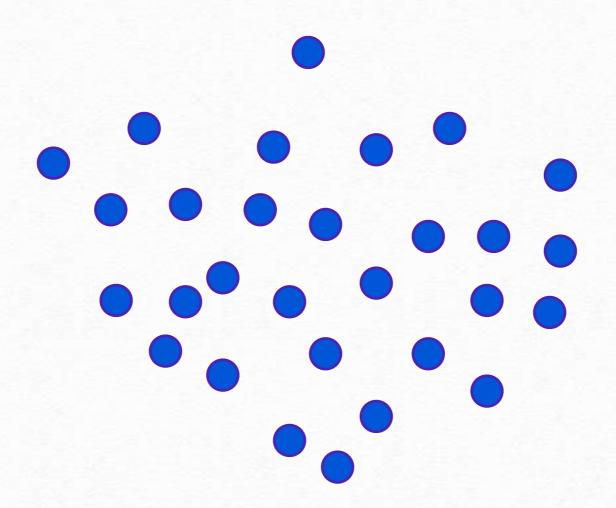
$$\langle V \rangle = \alpha \langle T \rangle$$

Expansion Experiment with Cold Atoms



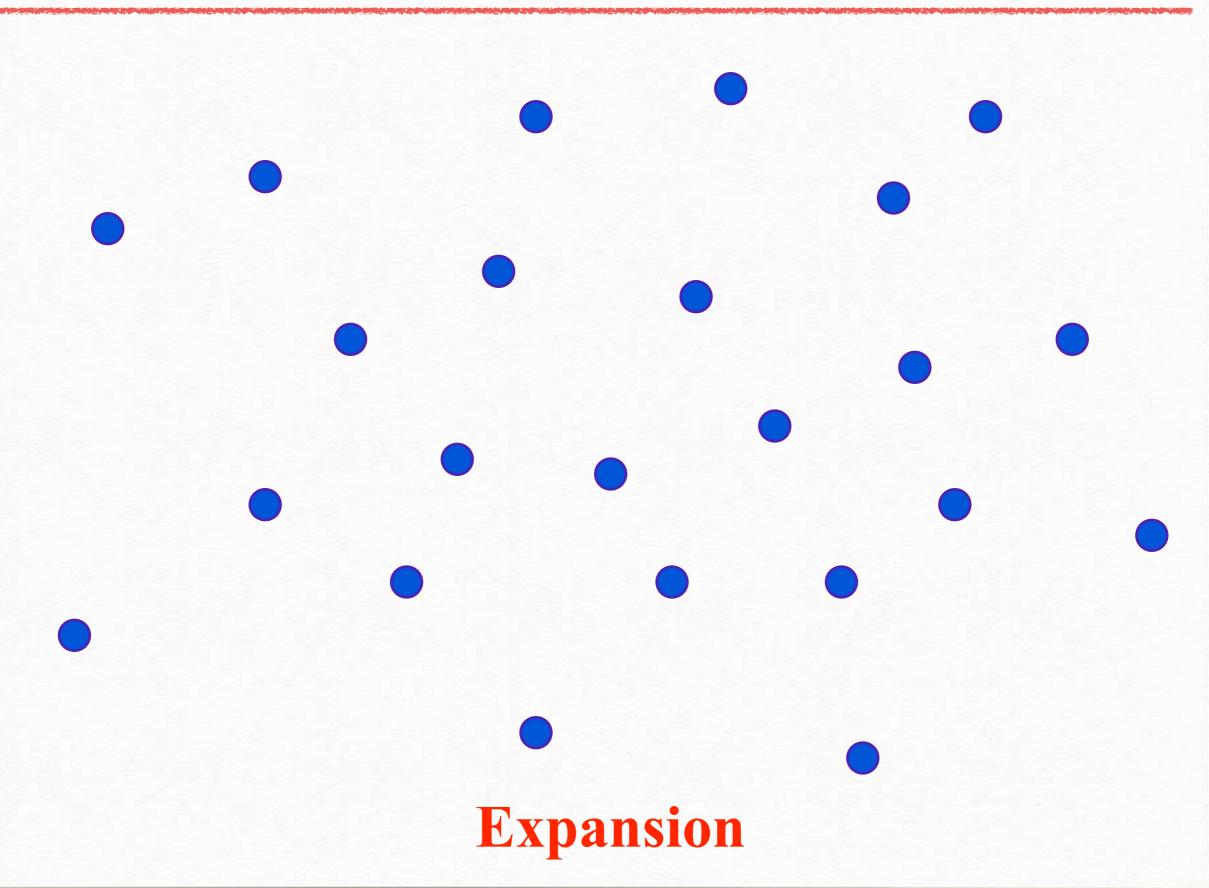
Gas hold in a trap

Expansion Experiment with Cold Atoms

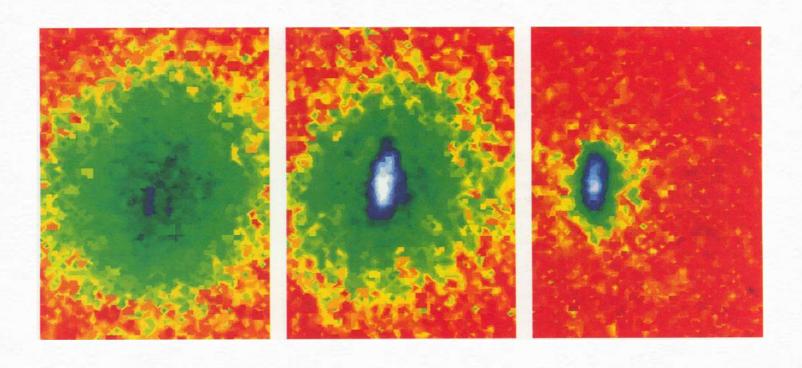


Turn off the trap

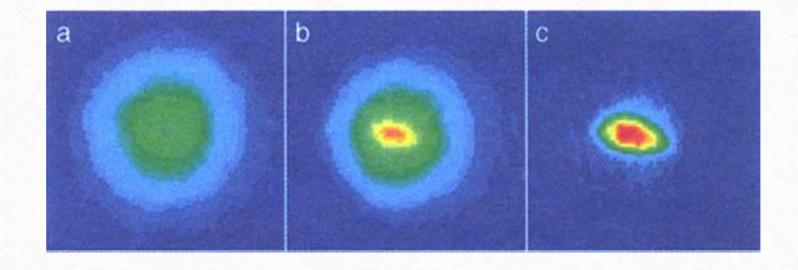
Expansion Experiment with Cold Atoms



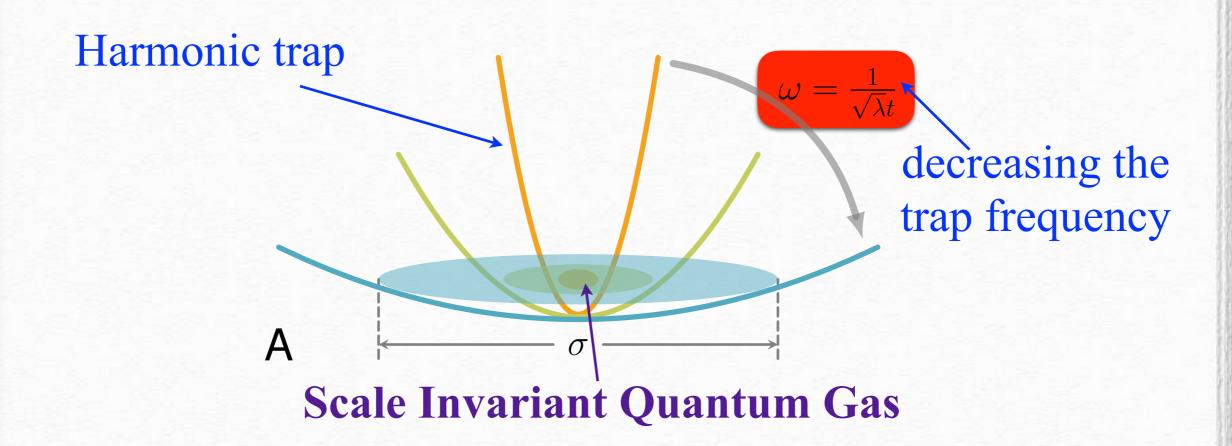
The First BEC Experiments

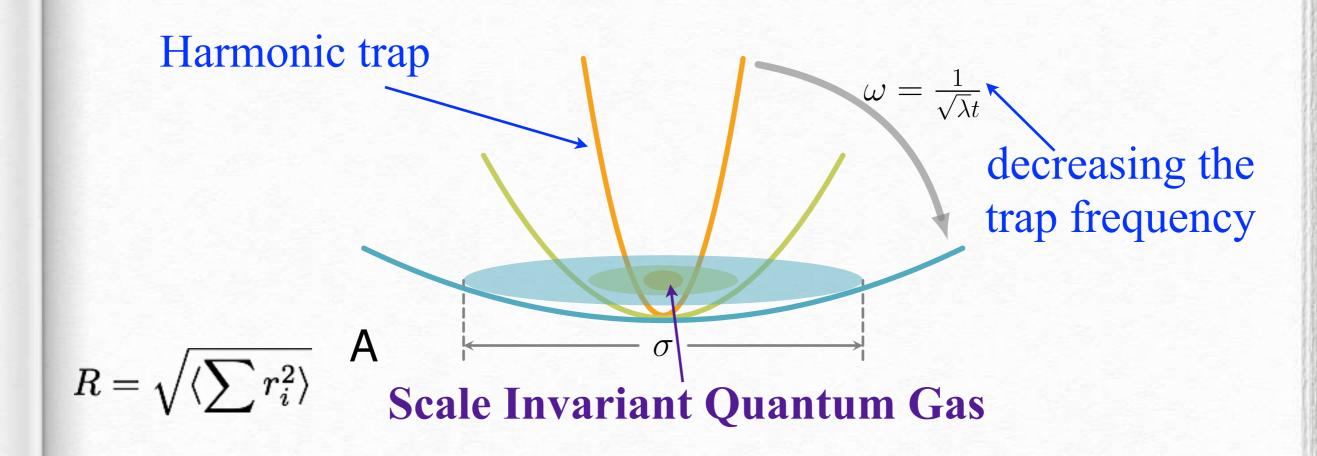


JILA Group



MIT Group



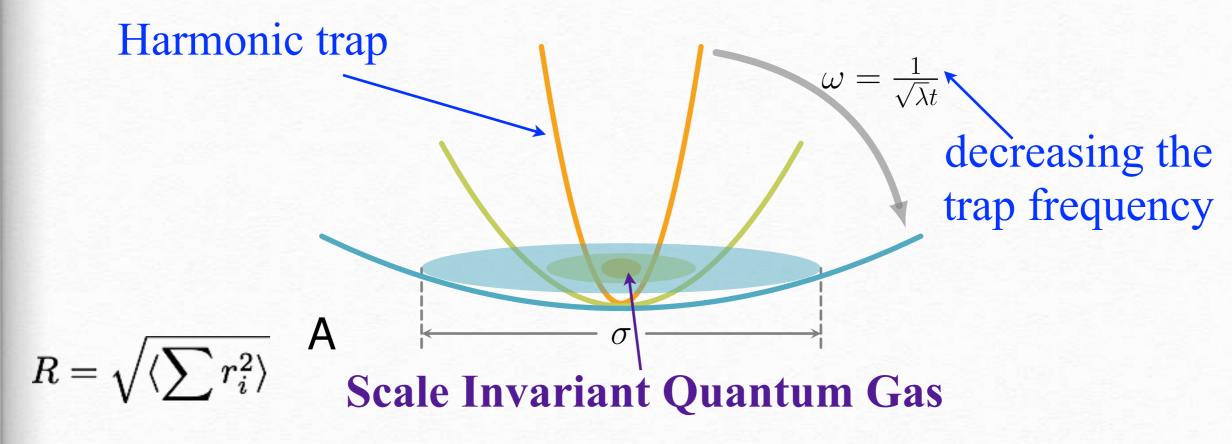


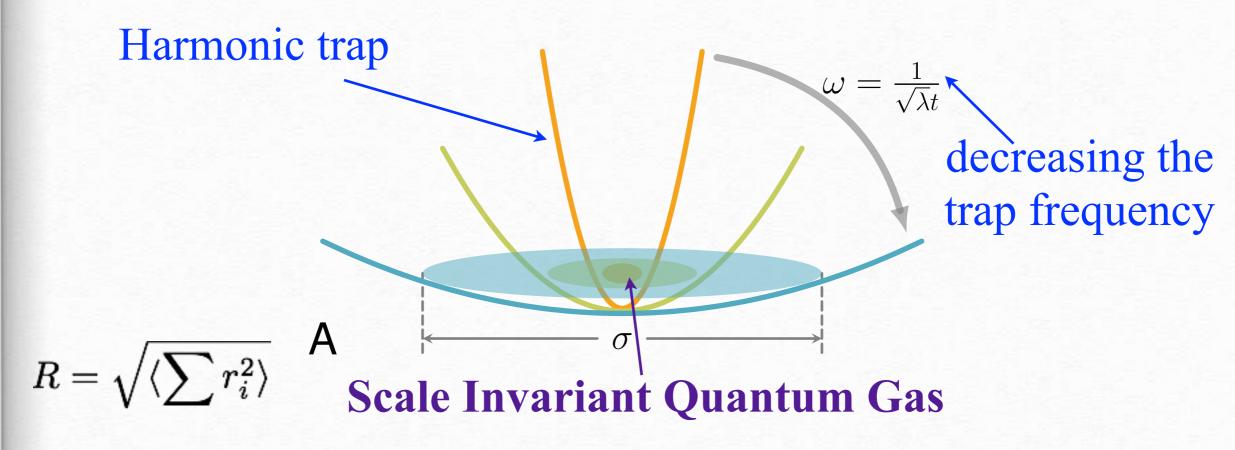
Harmonic length:

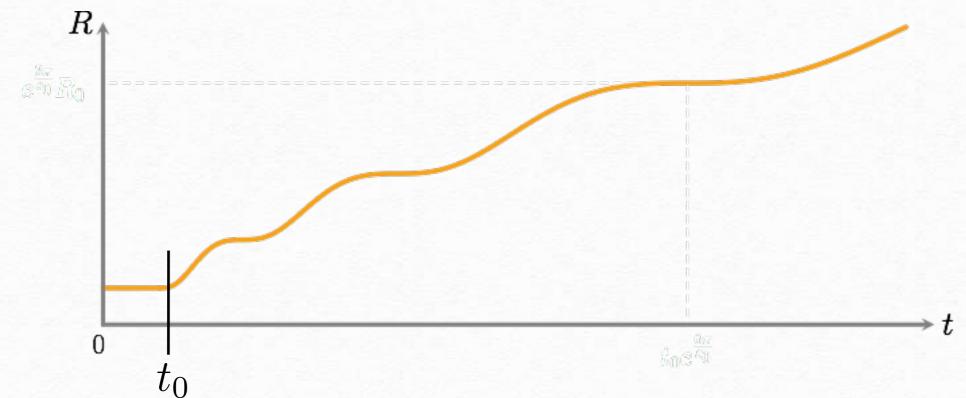
$$a = \sqrt{\frac{\hbar}{m\omega}}$$

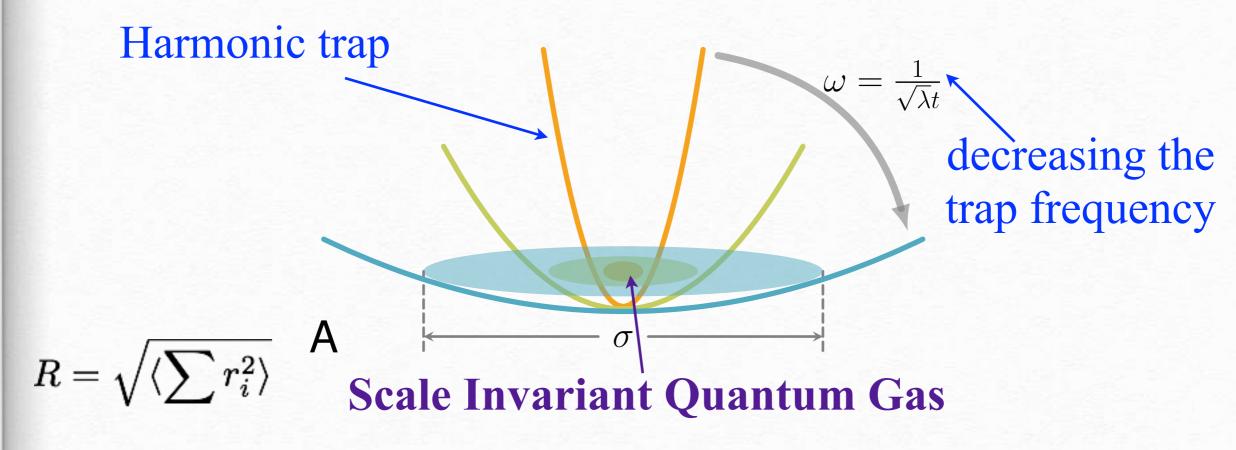
By dimension analysis: $\mathcal{R} \sim \sqrt{t}$

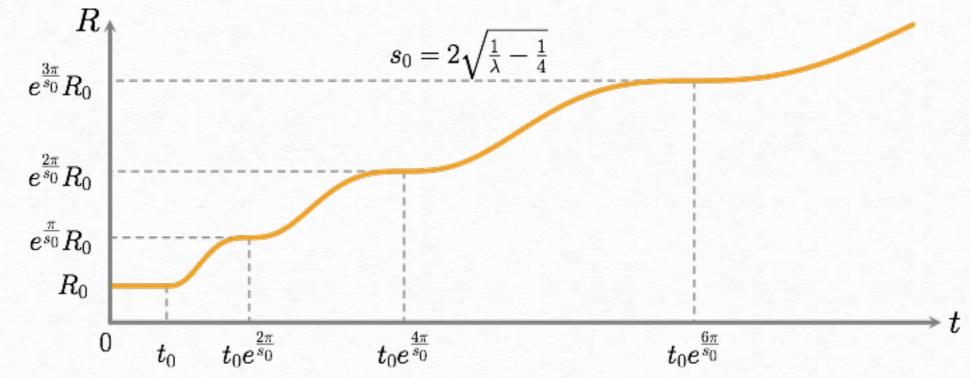
$$\mathcal{R} \sim \sqrt{t}$$

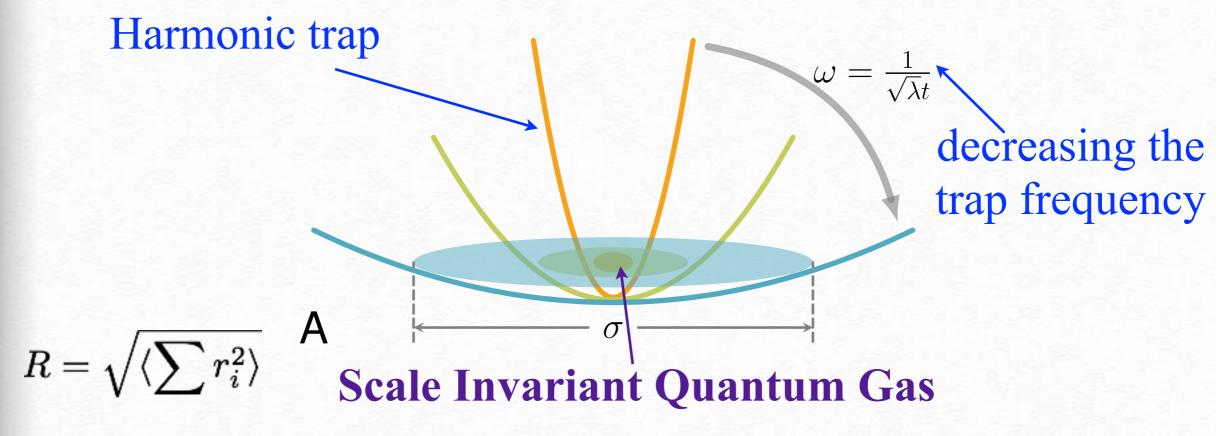


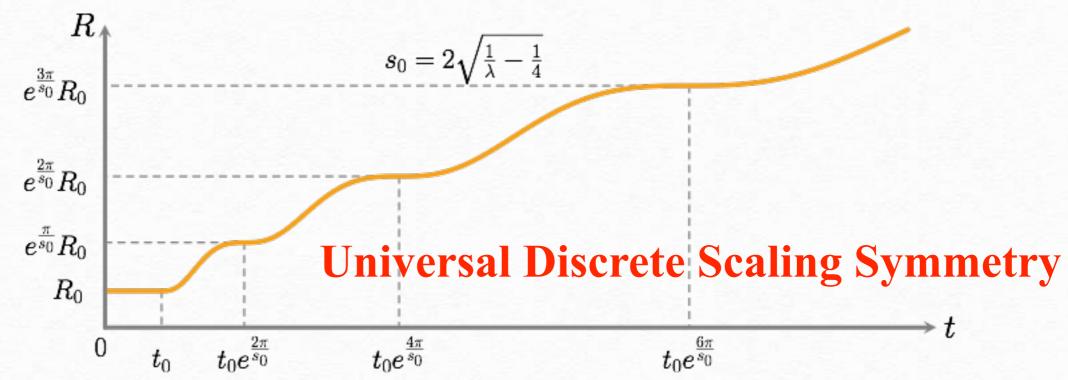








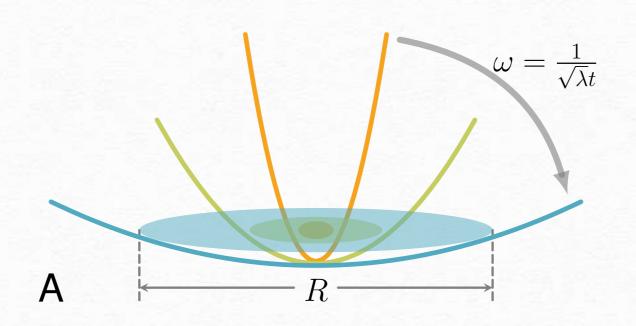




Significance

- Universal
 - Independent of Temperature
 - ☐ Independent of State of Matter
 - **☐** Independent Dimension
- "Hidden Symmetry"

Scaling Symmetry in a Harmonic Trap



$$i\hbar \frac{\partial}{\partial t} \Psi = \left[H + \sum_{i} \frac{1}{2} m\omega^{2} r_{i}^{2} \right] \Psi$$

Scale Transformation

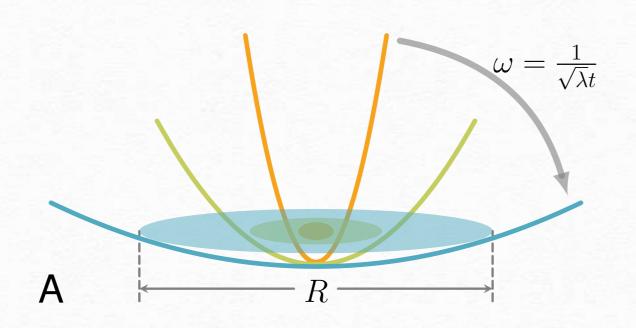
$$egin{array}{c} \mathbf{r}_i
ightarrow \Lambda \mathbf{r}_i \ t
ightarrow \Lambda^2 t \end{array}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\Lambda^2}$$

$$\frac{1}{\Lambda^2}$$

Scaling Symmetry in a Harmonic Trap



$$i\hbar \frac{\partial}{\partial t} \Psi = \left[H + \sum_{i} \frac{1}{2} m \omega^{2} r_{i}^{2} \right] \Psi$$

Scale Transformation

$$egin{aligned} \mathbf{r}_i &
ightarrow \Lambda \mathbf{r}_i \ t &
ightarrow \Lambda^2 t \end{aligned}$$

$$\frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}}$$

This scaling symmetry exists only if

$$\omega = \frac{1}{\sqrt{\lambda}t}$$

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i \langle \hat{D} \rangle$$

$$\frac{1}{2} \sum_{i} (\mathbf{r}_{i} \cdot \mathbf{p}_{i} + \mathbf{p}_{i} \cdot \mathbf{r}_{i})$$

Generator of spatial scaling transformation

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i\langle \hat{D} \rangle$$
$$i\frac{d}{dt}\langle \hat{D} \rangle = \langle [\hat{D}, H] \rangle = 2i\left(\langle H \rangle - \omega^{2}R^{2}\right)$$
$$\frac{d}{dt}\langle H \rangle = \langle \frac{\partial}{\partial t}H \rangle = \omega \dot{\omega}R^{2}$$

$$i\frac{d}{dt}R^2 = \sum_{i} \langle [r_i^2, H] \rangle = 2i \langle \hat{D} \rangle$$

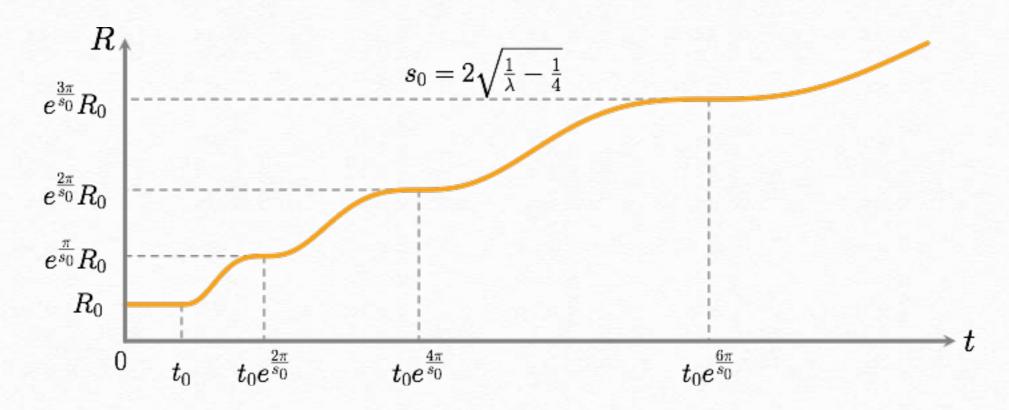
$$i\frac{d}{dt}\langle\hat{D}\rangle = \langle[\hat{D}, H]\rangle = 2i\left(\langle H\rangle - \omega^2 R^2\right)$$

$$\frac{d}{dt}\langle H\rangle = \langle \frac{\partial}{\partial t}H\rangle = \omega \dot{\omega}R^2$$

$$\frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0$$

$$\lambda < 4$$

$$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$$



Why plateaus?

$$\frac{d^n}{dt^n} \langle \hat{R}^2 \rangle |_{t=t_0} = 0$$

$$\begin{split} i\frac{d}{dt}R^2 &= \sum_i \langle [r_i^2, H] \rangle = 2i \langle \hat{D} \rangle \\ i\frac{d}{dt} \langle \hat{D} \rangle &= \langle [\hat{D}, H] \rangle = 2i \bigg(\langle H \rangle - \omega^2 R^2 \bigg) \\ \frac{d}{dt} \langle H \rangle &= \langle \frac{\partial}{\partial t} H \rangle = \omega \dot{\omega} R^2 \end{split}$$

$$\frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0$$

Why the equation-of-motion closes? An incident?

Remark I: Emergent Conformal Symmetry

The Schrodinger Group Symmetry

temporal translation: $H = -i\partial_t$

spatial translation: $P^i = -i\partial_i$

spatial rotation: $M^{ij} = ix_i\partial_j - ix_j\partial_i$,

Galilean boost: $K^i = -it\partial_i - mx_i$

dilation: $D = -2it\partial_t - ix_i\partial_i - i\frac{a}{2}$

special Schrödinger transformation: $C = -it^2\partial_t - itx_i\partial_i - \frac{1}{2}m\vec{x}^2 - i\frac{d}{2}t.$

Generalization to relativistic case to probe conformal symmetry

Remark II: Connection to the Efimov Effect

$$\frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0$$

Theorem: The general solution can be constructed as

$$R^{2}(t) = C_{1}x_{1}^{2} + C_{2}x_{1}x_{2} + C_{3}x_{2}^{2}$$
$$\ddot{x} + \omega^{2}(t)x = 0$$

Remark II: Connection to the Efimov Effect

$$\frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0$$

Theorem: The general solution can be constructed as

$$R^2(t) = C_1 x_1^2 + C_2 x_1 x_2 + C_3 x_2^2$$

$$\ddot{\omega} = \frac{1}{\sqrt{\lambda t}} \qquad \ddot{x} + \frac{1}{\lambda t^2} x = 0$$

Remark II: Connection to the Efimov Effect

$$\frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0$$

Theorem: The general solution can be constructed as

$$R^2(t) = C_1 x_1^2 + C_2 x_1 x_2 + C_3 x_2^2$$

$$\omega = \frac{1}{\sqrt{\lambda}t}$$

$$\omega = \frac{1}{\sqrt{\lambda t}} \qquad \ddot{x} + \frac{1}{\lambda t^2} x = 0$$

Equivalence:

$$x \leftrightarrow \psi$$
 $t \leftrightarrow \rho$

$$t \leftrightarrow \rho$$

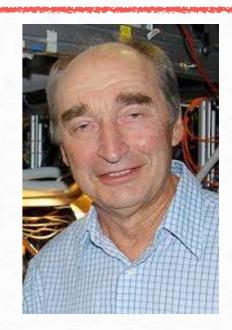
$$\left[-\frac{\hbar^2 d^2}{2m d\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2} \right] \psi = E\psi$$

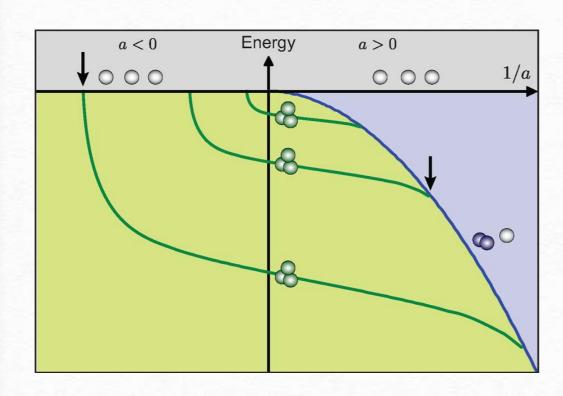
$$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$$

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970





Universal Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970

$$\[-\frac{\hbar^2 d^2}{2m d\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2} \] \psi = E\psi$$

$$\left[\psi = \sqrt{\rho}\cos[s_0\log(\rho/\rho_0)]\right]$$

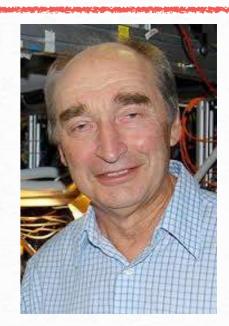
$$ho o e^{2\pi/s_0}
ho$$
 $E_{
m T}^{(n+1)}/E_{
m T}^{(n)} \simeq e^{-2\pi/s_0}$

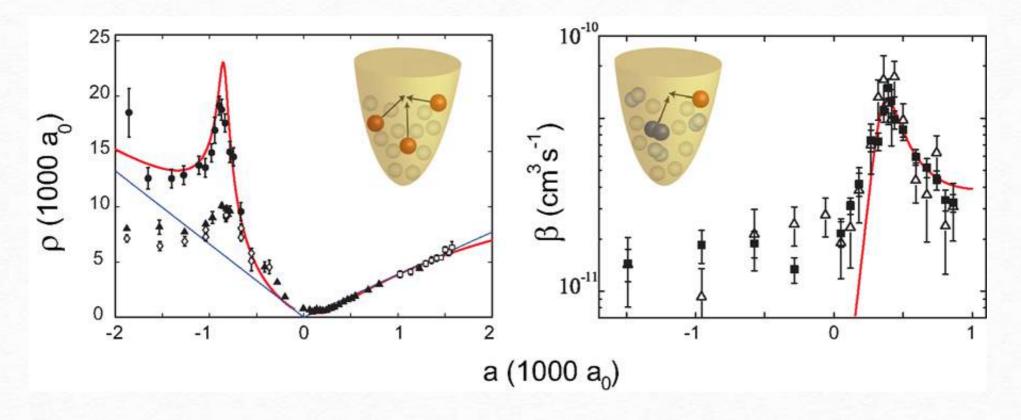
Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970





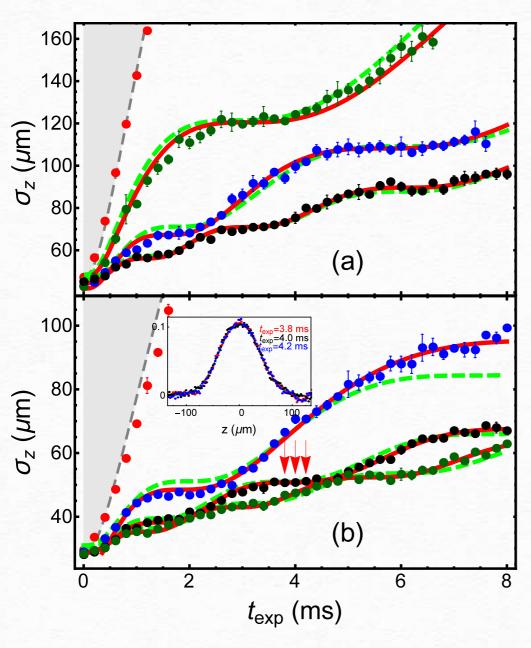
Innsbruck 2005, and many later

Experimental Observation

The Efimov Effect	The "Efimovian" Expansion
$-\frac{\hbar^2 d^2}{2md^2 \rho} \psi - \frac{\lambda}{\rho^2} \psi = E\psi$	$\frac{d^3}{dt^3}\langle \hat{R}^2 \rangle + \frac{4}{\lambda t^2} \frac{d}{dt} \langle \hat{R}^2 \rangle - \frac{4}{\lambda t^3} \langle \hat{R}^2 \rangle = 0.$
Spatial continuous	Temporal continuous
scaling symmetry	scaling symmetry
Short-range boundary condition	Initial time
$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$	$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$
Spatial discrete scaling	Temporal discrete scaling
$\begin{array}{c} \text{symmetry} \\ \rho \rightarrow e^{2\pi/s_0} \rho \end{array}$	$\begin{array}{c} \text{symmetry} \\ t \rightarrow e^{2\pi/s_0}t \end{array}$

Experimental Observation

by Haibin Wu in East China Normal University



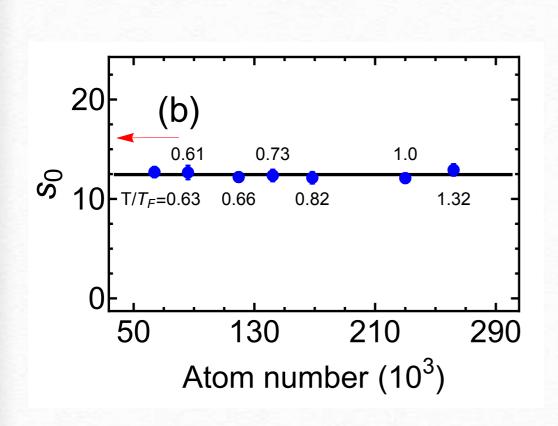
Non-interacting

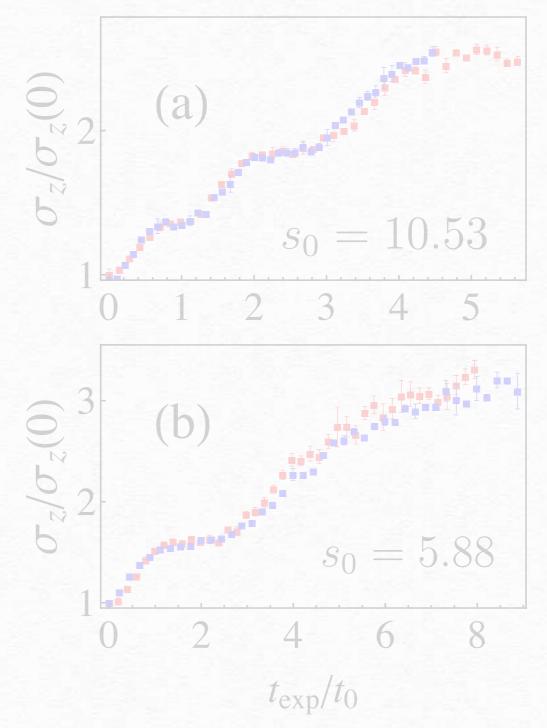
Unitary Fermions

$$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$$

Experimental Observation

by Haibin Wu in East China Normal University



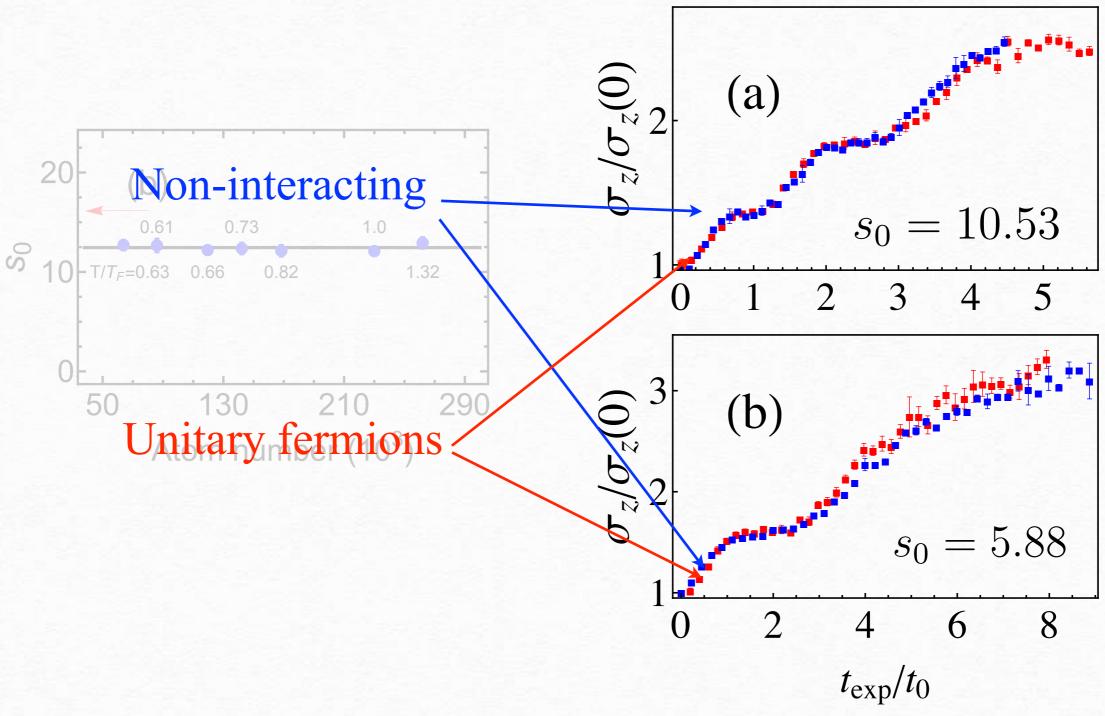


Independent of Temperature

Independent of State of Matter

Experimental Observation

by Haibin Wu in East China Normal University

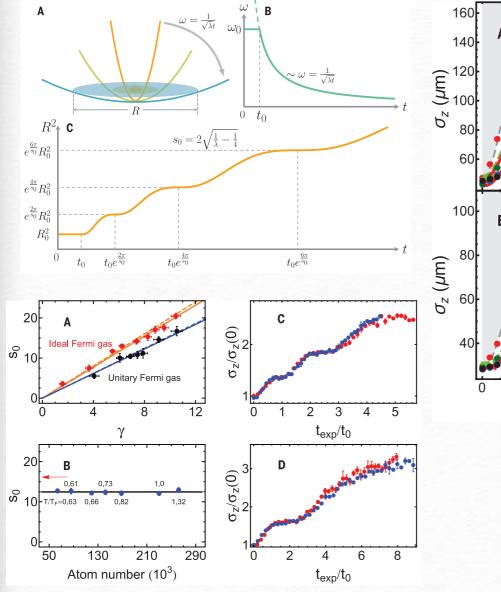


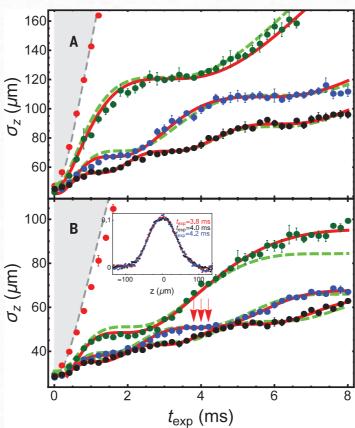
Independent of Temperature

Independent of State of Matter

Observation of the Efimovian expansion in scale-invariant Fermi gases

Shujin Deng,^{1*} Zhe-Yu Shi,^{2*} Pengpeng Diao,¹ Qianli Yu,¹ Hui Zhai,² Ran Qi,³† Haibin Wu^{1,4}†





Dr. Zheyu Shi

Prof. Ran Qi at Renmin University

Science, 371, 353 (2016)

Haibin Wu'g group in ECNU

Topology

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:

 $J_1e^{i\phi}$

(b) ϕ / π $C_{1} = -1$ $C_{1} = 0$ $C_{1} = 0$

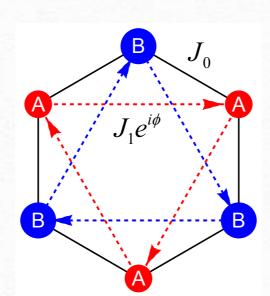
How do I know the Chern Number of the Hamiltonian? At equilibrium:

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:



(b) ϕ / π $C_{1} = -1$ $C_{1} = 1$ $C_{1} = 0$

How do I know the Chern Number of the Hamiltonian? At equilibrium:

Number of Edge States

Bulk Chern Number

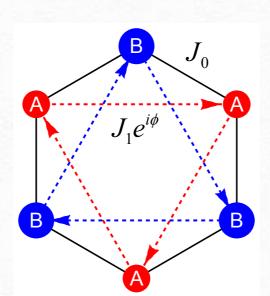
Quantized Hall Conductance

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:



(b) ϕ / π $C_1 = -1$ $C_1 = 0$ $C_1 = 0$

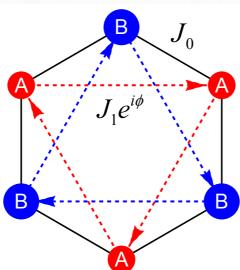
How do I know the Chern Number of the Hamiltonian? Quench:

A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:

(a)



(b) ϕ / π $C_1 = -1$ $C_1 = 1$ $C_1 = 0$

How do I know the Chern Number of the Hamiltonian?

Quench:

Number of Edge States

D'Alessio and Rigol (2015)

Chern Number of Hamiltonian

Chern Number of Wave Function

Quantized Hall Conductance

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:

 $J_1e^{i\phi}$

(b) ϕ / π $C_1 = -1$ $C_1 = 0$ $C_1 = 0$

How do I know the Chern Number of the Hamiltonian? Quench:

Number of Edge States

Chern Number of Hamiltonian

Chern Number of Wave Function

Quantized Hall Conductance

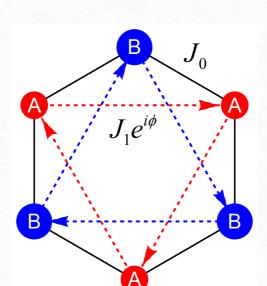
D'Alessio and Rigol (2015) Caio, Cooper, Bhassen (2015)

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:



(b) ϕ / π $C_{1} = -1$ $C_{1} = 1$ $C_{1} = 0$

How do I know the Chern Number of the Hamiltonian? Quench:

Number of Edge States

Chern Number of Hamiltonian

Chern Number of Wave Function

Quantized Hall Conductance

Hu, Zoller, Budike (2016), Wilson, Song, Refael (2016) Unal, Mueller, Oktel (2016)

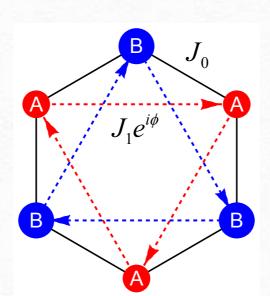
D'Alessio and Rigol (2015) Caio, Cooper, Bhassen (2015)

A two-band Chern Insulator

(a)

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

For instance, the Haldane model:



(b) ϕ/π $C_1 = -1$ $C_1 = 0$ $C_1 = 0$

How do I know the Chern Number of the Hamiltonian? Quench:

Is there a Quantized Value one can extract from the quench dynamics, and this value equals to the bulk Chern number.

A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$

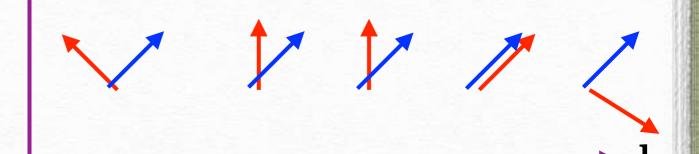
A two-band Chern Insulator

 $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$
 n



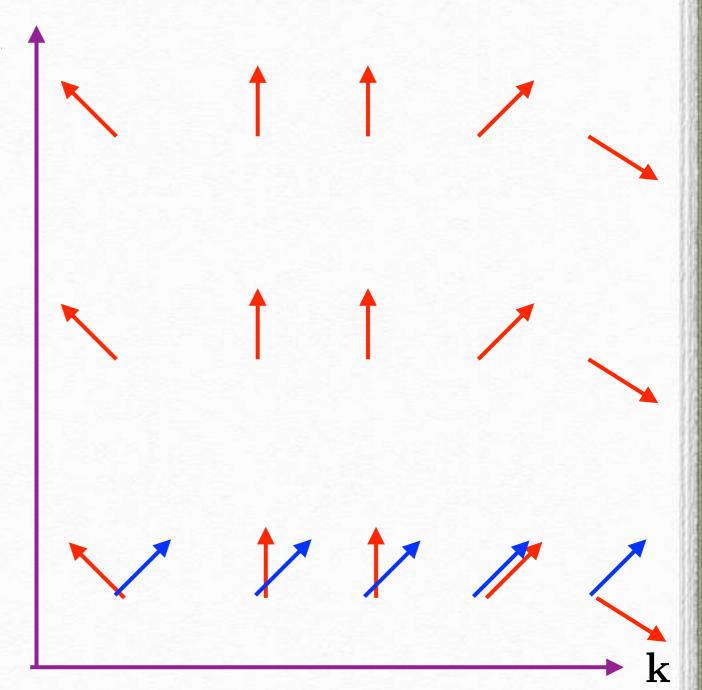
A two-band Chern Insulator

 $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$



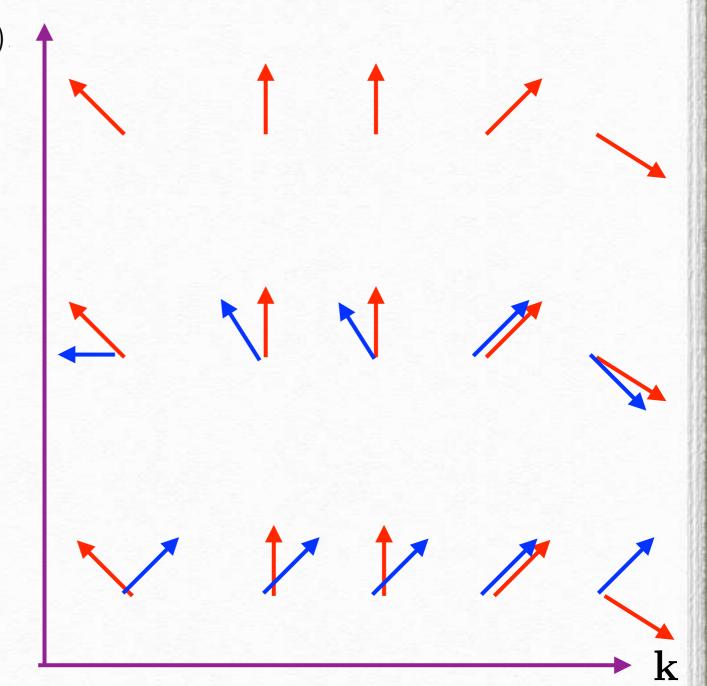
A two-band Chern Insulator

 $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$
 n



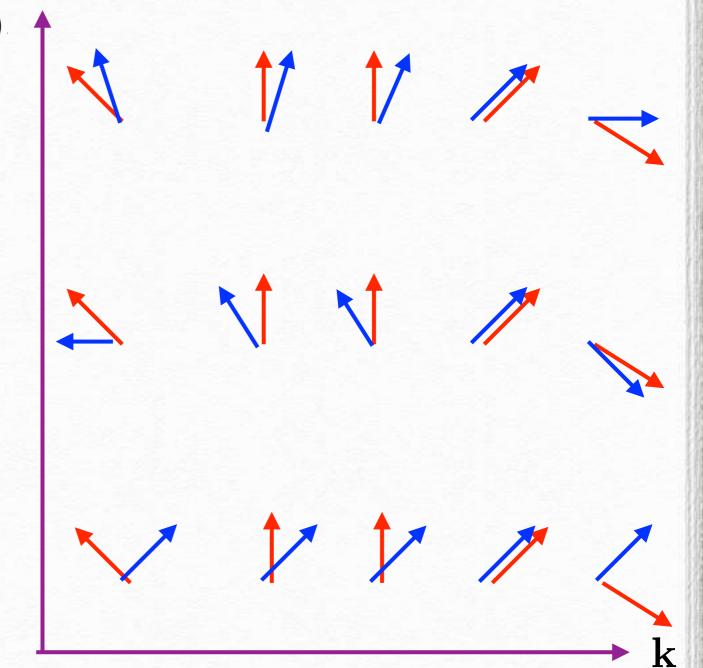
A two-band Chern Insulator

 $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$
 n



A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

Quench from hi(k)

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

$$[k_x, k_y, t]$$

The Scheme: Taking any two constant vectors \mathbf{n}_1 and \mathbf{n}_2 on the Bloch sphere, their inverse images $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$ are two trajectories in the $[k_x, k_y, t]$ space. The linking number of these two trajectories within the first Brillouin zone equals to the Chern number of the ground state for the final Hamiltonian at the same filling

A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

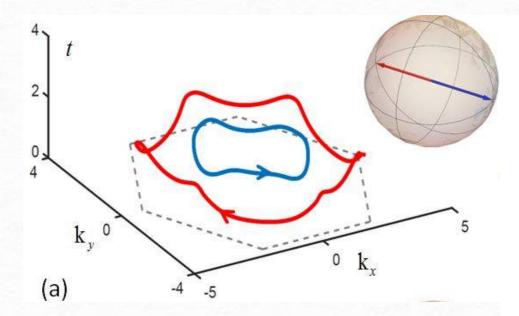
Quench from hi(k)

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

The Scheme: Taking any two constant vectors \mathbf{n}_1 and \mathbf{n}_2 on the Bloch sphere, their inverse images $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$ are two trajectories in the $[k_x, k_y, t]$ space. The linking number of these two trajectories within the first Brillouin zone equals to the Chern number of the ground state for the final Hamiltonian at the same filling

$$[k_x, k_y, t]$$



A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

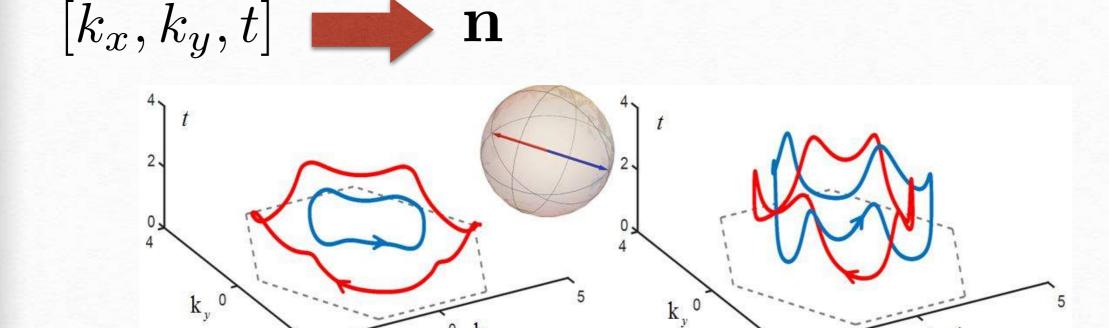
Quench from hi(k)

(a)

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

The Scheme: Taking any two constant vectors \mathbf{n}_1 and \mathbf{n}_2 on the Bloch sphere, their inverse images $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$ are two trajectories in the $[k_x, k_y, t]$ space. The linking number of these two trajectories within the first Brillouin zone equals to the Chern number of the ground state for the final Hamiltonian at the same filling



(b)

A two-band Chern Insulator

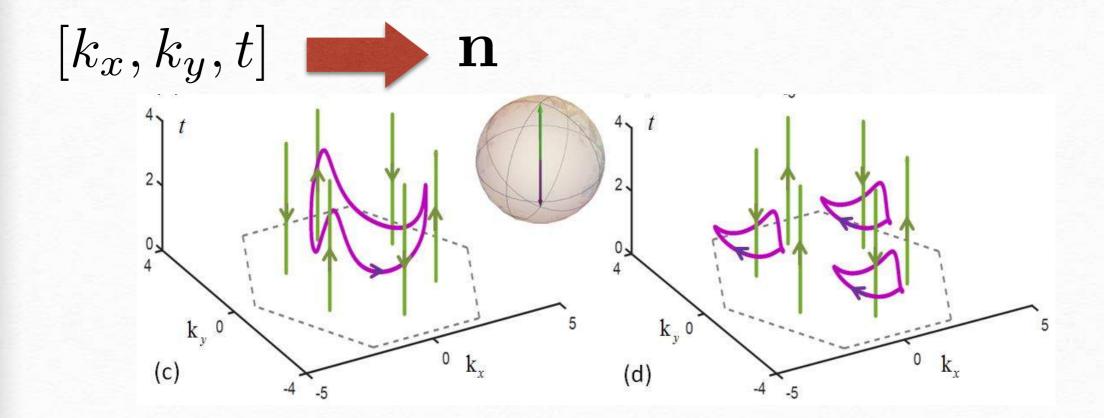
$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

Quench from hi(k)

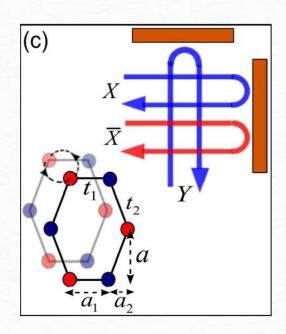
$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

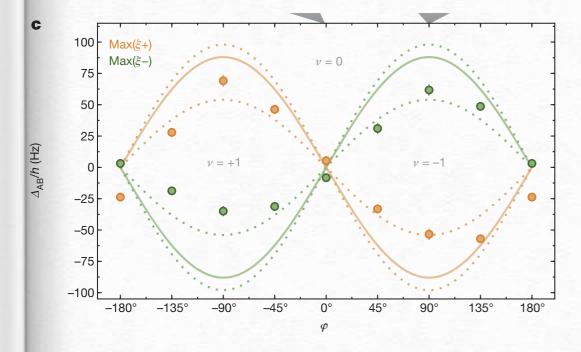
The Scheme: Taking any two constant vectors \mathbf{n}_1 and \mathbf{n}_2 on the Bloch sphere, their inverse images $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$ are two trajectories in the $[k_x, k_y, t]$ space. The linking number of these two trajectories within the first Brillouin zone equals to the Chern number of the ground state for the final Hamiltonian at the same filling



Application to Cold Atom Experiments

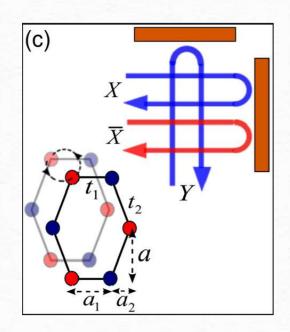


Wei Zheng and Hui Zhai, PRA 2014

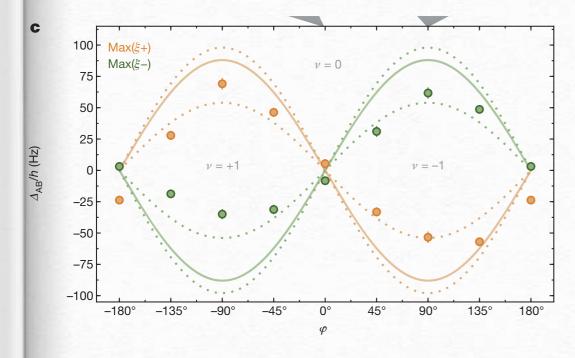


ETH group, Nature, 2014

Application to Cold Atom Experiments

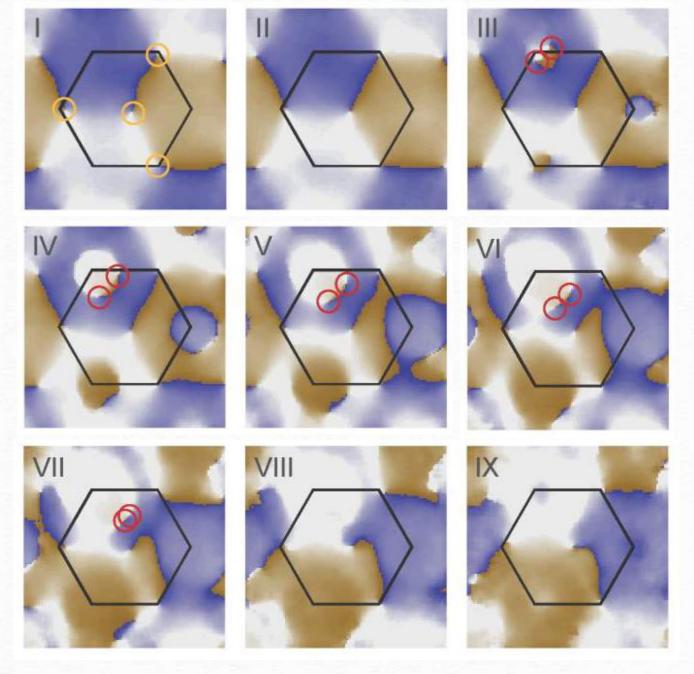


Wei Zheng and Hui Zhai, PRA 2014



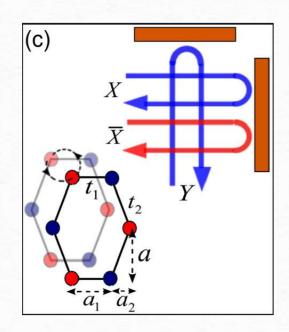
ETH group, Nature, 2014

 $\zeta(\mathbf{k}) = \begin{pmatrix} \sin(\theta_{\mathbf{k}}/2) \\ -\cos(\theta_{\mathbf{k}}/2)e^{i\varphi_{\mathbf{k}}} \end{pmatrix}$

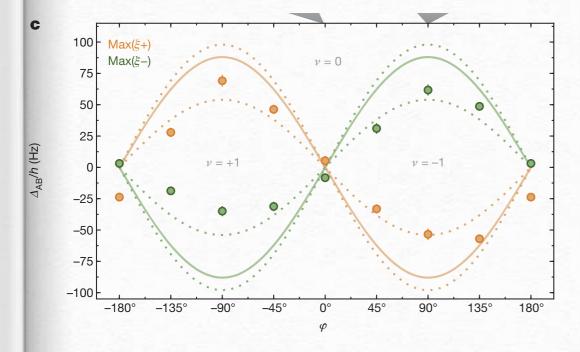


Hamburg group arXiv: 1608.05616

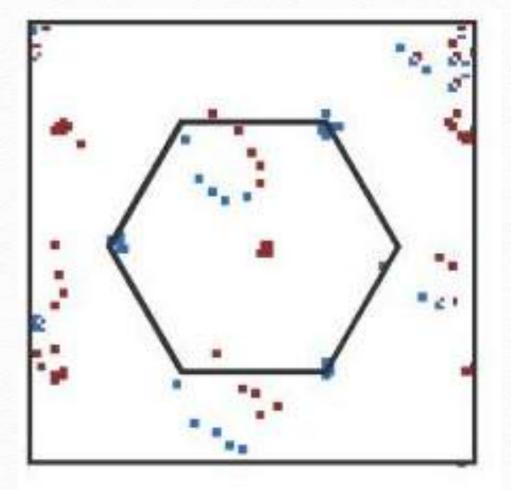
Application to Cold Atom Experiments



Wei Zheng and Hui Zhai, PRA 2014



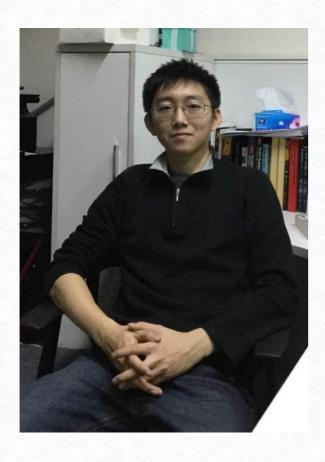
$$\zeta(\mathbf{k}) = \begin{pmatrix} \sin(\theta_{\mathbf{k}}/2) \\ -\cos(\theta_{\mathbf{k}}/2)e^{i\varphi_{\mathbf{k}}} \end{pmatrix}$$



Measuring Topological Number of a Chern-Insulator from Quench Dynamics

Ce Wang, Pengfei Zhang,* Xin Chen, Jinlong Yu, and Hui Zhai[†]
Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
(Dated: November 28, 2016)

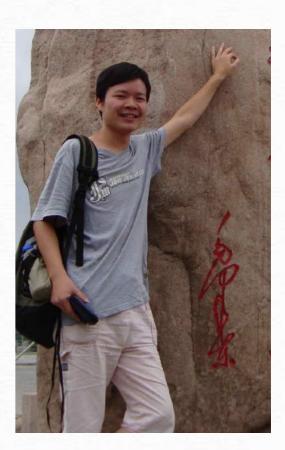
arXiv:1611.03304



Ce Wang

Pengfei Zhang

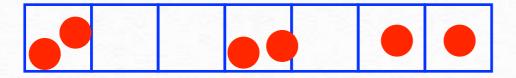
Xin Chen



Dr. Jinlong Yu

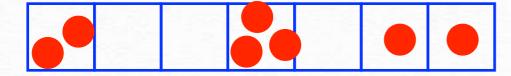
Entropy

Local quench



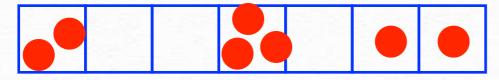
Local quench

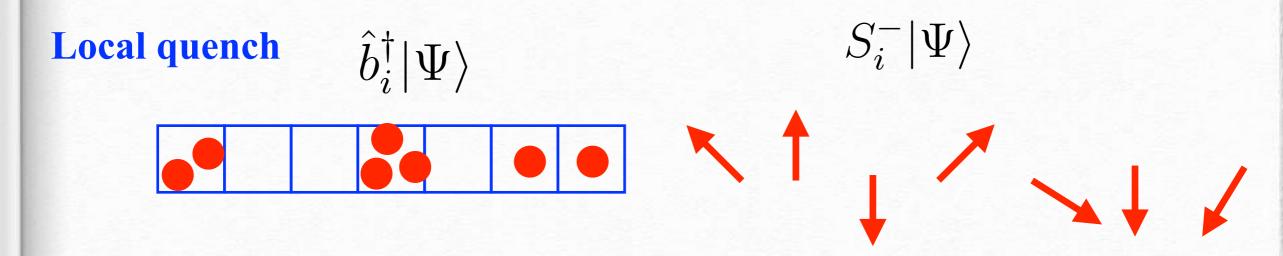
$$\hat{b}_i^\dagger |\Psi
angle$$

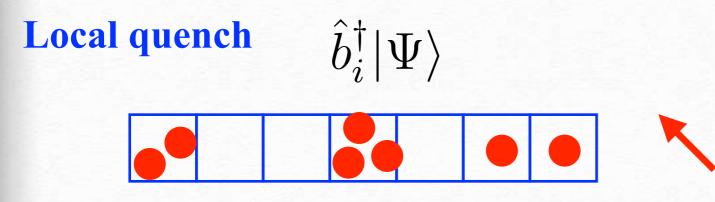


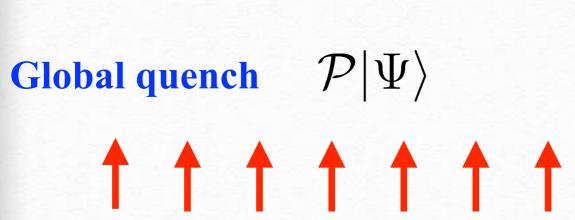
Local quench

$$\hat{b}_i^\dagger |\Psi
angle$$

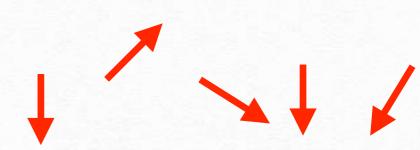


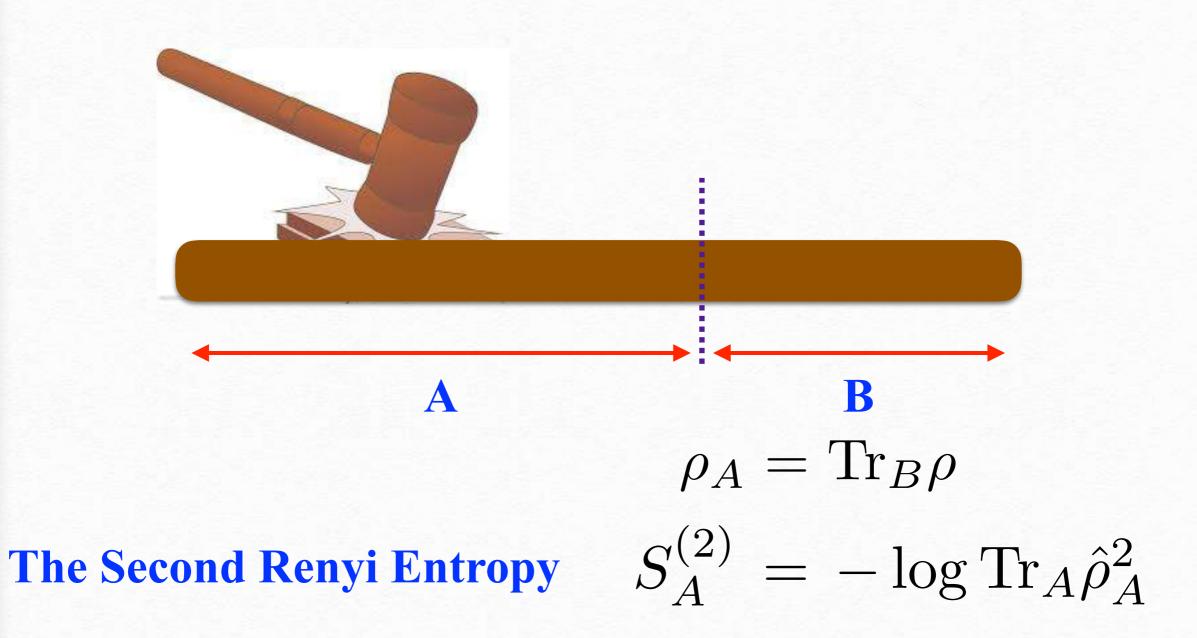


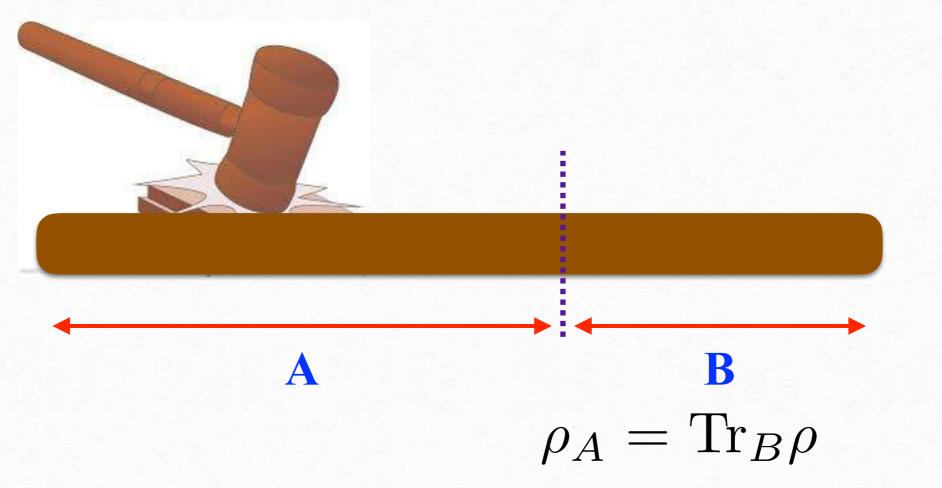




$$S_i^-|\Psi\rangle$$







The Second Renyi Entropy
$$S_A^{(2)} = -\log {
m Tr}_A \hat{
ho}_A^2$$

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

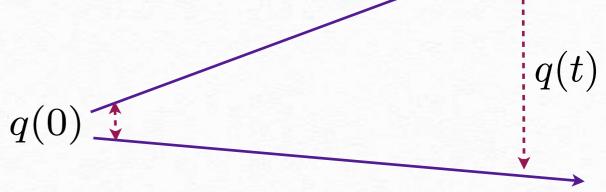
Normal correlation you can find in any textbook:

$$\langle \hat{W}^{\dagger}(t)\hat{W}(t)\hat{V}^{\dagger}(0)\hat{V}(0)\rangle_{\beta}$$

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

$$\frac{\partial q(t)}{\partial q(0)} \sim e^{\lambda_L t}$$



 λ_L Lyapunov exponent

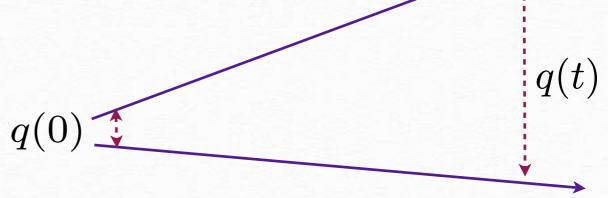
$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

OTOC diagnoses chaotic behavior

$$\frac{\partial q(t)}{\partial q(0)} \sim e^{\lambda_L t}$$

$$= \{q(t), p(0)\}$$



 λ_L Lyapunov exponent

$$C(t) = \langle |[W(t), V(0)]|^2 \rangle_{\beta}$$

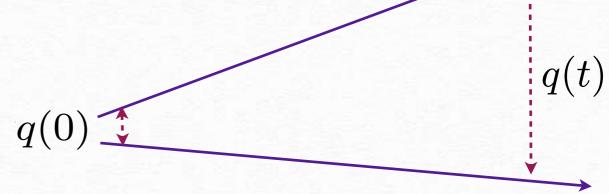
$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

OTOC diagnoses chaotic behavior

$$\frac{\partial q(t)}{\partial q(0)} \sim e^{\lambda_L t}$$

$$= \{q(t), p(0)\}$$



λ_L Lyapunov exponent

$$C(t) = \langle \underline{V}^{\dagger}(0)W^{\dagger}(t)W(t)V(0) + W^{\dagger}(t)V^{\dagger}(0)V(0)W(t) \rangle$$

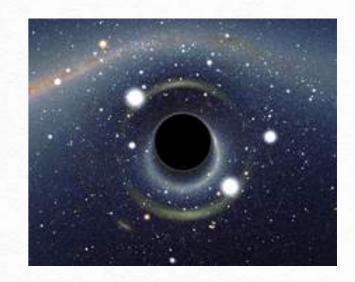
$$-W^{\dagger}(t)V^{\dagger}(0)W(t)V(0) - V^{\dagger}(0)W^{\dagger}(t)V(0)W(t) \rangle_{\beta}$$

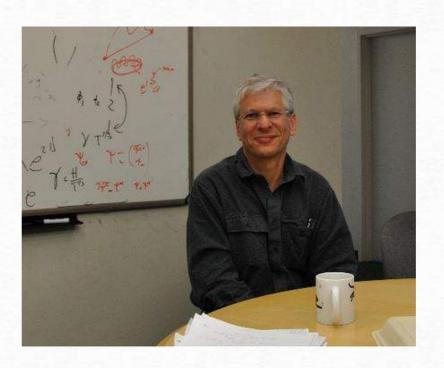
"Out-of-time-ordered correlators"

Larkin, Ovchinnikov 1969 Kitaev, KITP, 2014

OTOC has also emerged in studying gravity models.
 The calculation with a black hole shows that

$$\lambda_L = \frac{2\pi}{\beta}$$





Kitaev, KITP, 2014; Shenker and Stanford, JHEP, 2014, 2015

OTOC has also emerged in studying gravity models.
 The calculation with a black hole shows that

$$\lambda_L = \frac{2\pi}{\beta}$$

• OTOC has a upper bound $\lambda_L \leqslant rac{2\pi}{\beta}$

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC has also emerged in studying gravity models.
 The calculation with a black hole shows that

$$\lambda_L = \frac{2\pi}{\beta}$$

• OTOC has a upper bound $\lambda_L \leqslant rac{2\pi}{eta}$

A quantum system with holographic duality saturates the bound An example is the SYK model

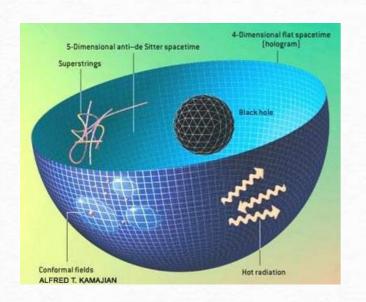
Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC has also emerged in studying gravity models.
 The calculation with a black hole shows that

$$\lambda_L = \frac{2\pi}{\beta}$$

• OTOC has a upper bound $\lambda_L \leqslant rac{2\pi}{eta}$

A quantum system with holographic duality saturates the bound An example is the SYK model



Holographic duality: A quantum many body system (strongly interacting, emergent conformal field symmetry) in D-dimension can be "mapped" to an Einstein gravity theory in D+1-dimension

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC has also emerged in studying gravity models.
 The calculation with a black hole shows that

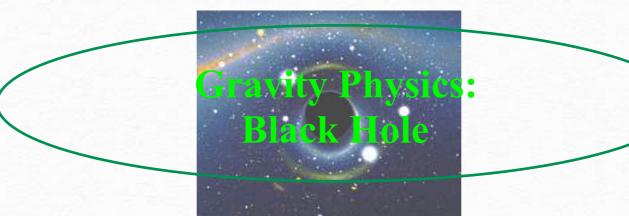
$$\lambda_L = \frac{2\pi}{\beta}$$

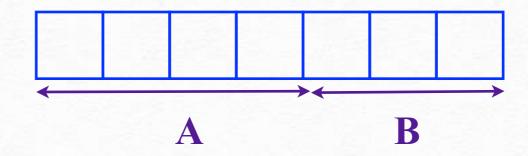
lacksquare OTOC has a upper bound $\lambda_L \leqslant rac{2\pi}{eta}$

A quantum system with holographic duality saturates the bound An example is the SYK model

 Delocalization of information is closely related to the decay of the OTOC, and the butterfly effect in quantum system implies the information-theoretic definition of scrambling.

 $\langle W^\dagger(t) V^\dagger(0) W(t) V(0) \rangle$





$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

Non-Equilibrium Properties

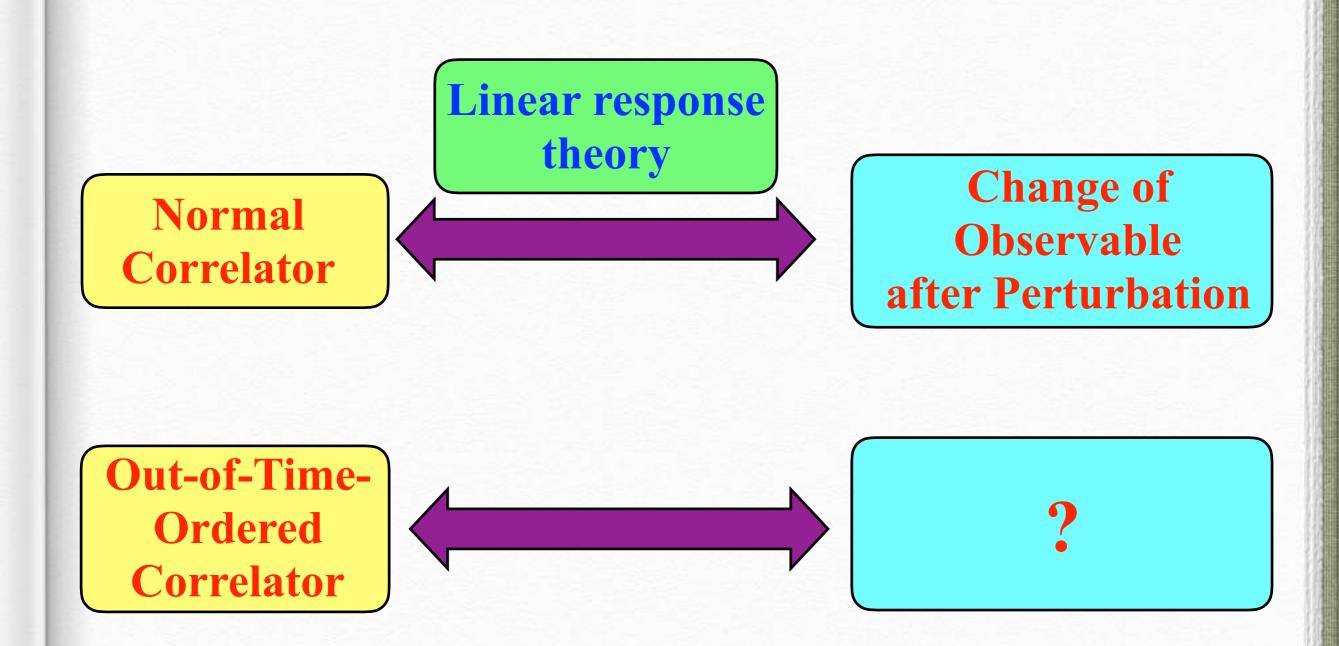
Quench the system by arbitrary operator (

Entanglement Entropy

Equilibrium Properties

$$\hat{V} = \hat{O}\hat{O}^{\dagger}$$

 \hat{M} is a complete set of operators in B OTOC



Normal
Correlator

Linear response theory

Change of
Observable
after Perturbation

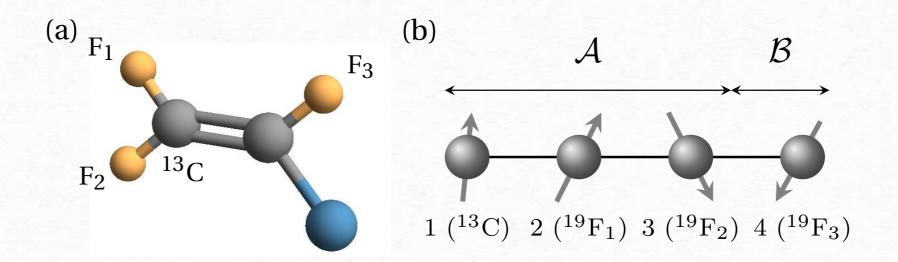
Out-of-Time-Ordered Correlator Increase of Entanglement after Quench

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

Thermal Phase	Single-Particle Localized	Many-Body Localized
Power-law spreading of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement
OTOC exponential decay	OTOC remains constant	OTOC power-law decay

Our Results

NMR Quantum Simulation Measuring OTOC



$$F(t) = \langle \hat{B}^{\dagger}(t)\hat{A}^{\dagger}(0)\hat{B}(t)\hat{A}(0)\rangle_{\beta}$$

$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

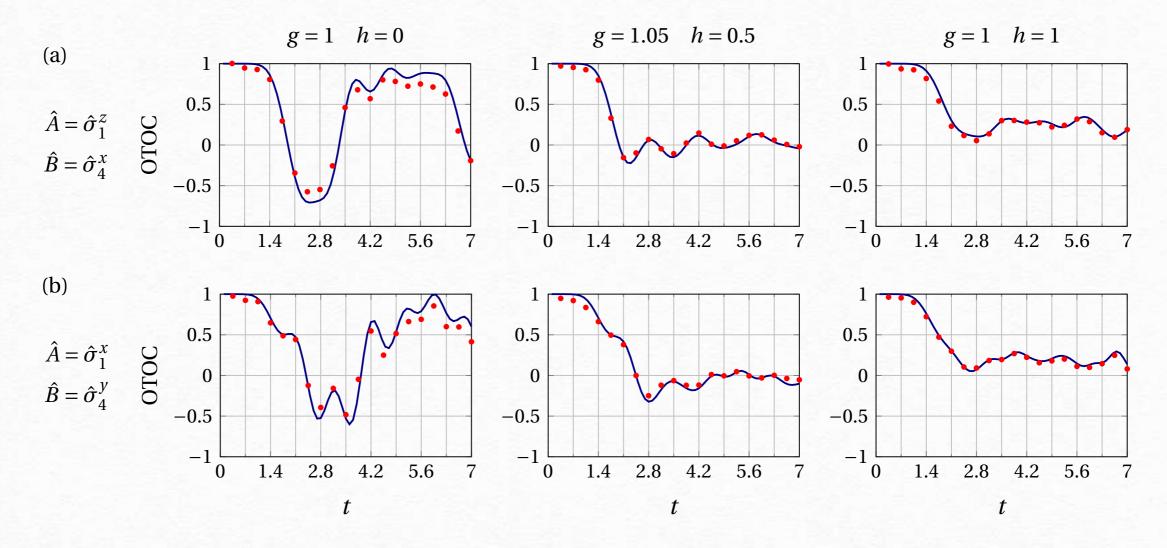
- Zero h: Integrable case
- Non-Zero h: Non-Integrable case

Measurements of OTOC for Ising Chain

$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

Integrable Case

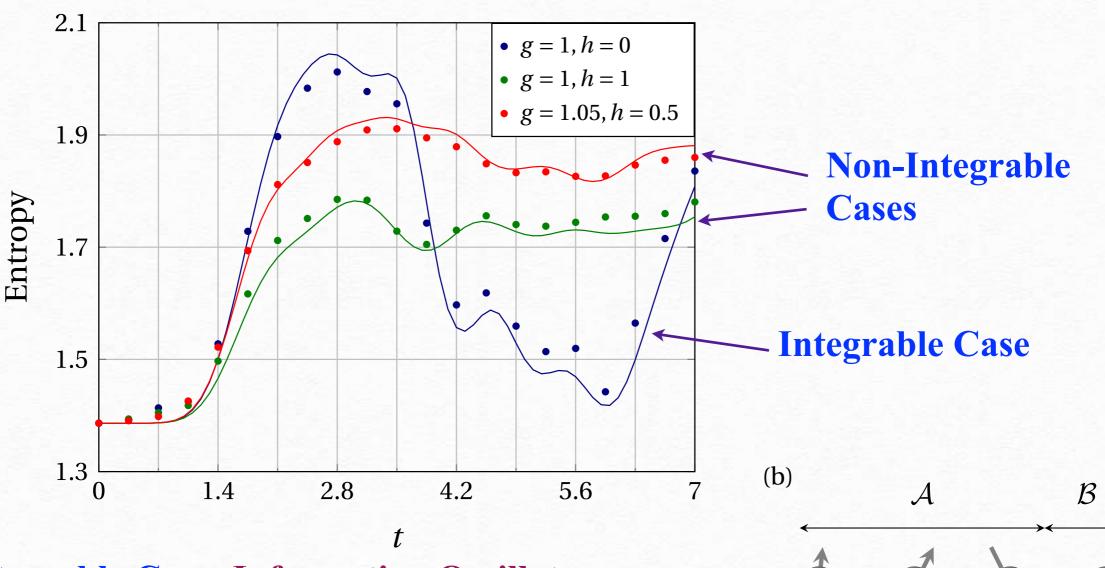
Non-Integrable Cases



Hosur, Qi, Roberts and Yoshida, 2015

Measurements of OTOC for Ising Chain

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$



Integrable Case: Information Oscillates

Non-Integrable Case: Information Scrambles

Out-of-Time-Order Correlation for Many-Body Localization

Ruihua Fan,^{1,2,*} Pengfei Zhang,^{1,*} Huitao Shen,¹ and Hui Zhai¹

¹Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

²Department of Physics, Peking University, Beijing, 100871, China

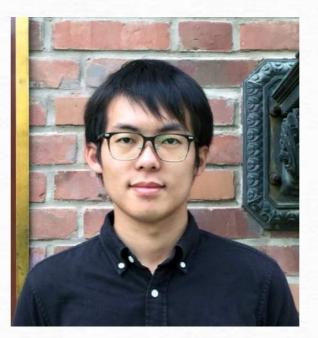
(Dated: August 16, 2016)

arXiv:1608.01914

Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator

Jun Li,¹ Ruihua Fan,²,³ Hengyan Wang,⁴ Bingtian Ye,³ Bei Zeng,⁵,⁶,²,∗ Hui Zhai,²,† Xinhua Peng,⁴,७,८,‡ and Jiangfeng Du⁴,७

arXiv:1609.01246



Prof. Bei Zeng

@University of Guelph

Prof. Xinhua Peng and Prof. Jiangfeng Du's group @USTC

Ruihua Fan Pengfei Zhang Huitao Shen

Thank You Very Much for Attention!