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プレゼンター
プレゼンテーションのノート
My name is Hiroshi Ueda from RIKEN in Japan. First of all, I'd like to thank the organizers for giving me the opportunity to present our recent work.�Today, I would like to talk on “Symmetry-protected topological phases and gapped vector-spin-chirality phases in a dimerized spin-1/2 XXZ zigzag chain”The title is slightly changed from that on the web page. This work has been done in collaboration with Onoda-san.And this work has just appeared on arXiv yesterday.



Introduction: Spiral magnet and ferroelectricity 

• Ferroelectricity without 
any magnetic spiral long-
range order (LRO) 
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H. Katsura, N. Nagaosa, and A. V. Balastky, 
PRL 95, 057205 (2005). 

fluctuation 

Vector chirality 

Introduction (1/7) 

プレゼンター
プレゼンテーションのノート
A novel spontaneously symmetry-broken state characterized by a LRO of a vector chirality in the absence of a magnetic spiral LRO has long been sought both theoretically and experimentally in frustrated magnets. This order breaks the inversion symmetry but preserves the time-reversal symmetry. And it can be detected as the linearly coupled ferroelectric polarization in insulating magnets.These figures show schematic pictures of the ferroelectric polarization induced by the vector-chirality with a spiral-spin LRO (upper Fig.) and without a spiral-spin LRO (lower Fig.). The ferroelectric polarization is given by the triple vector product including the vector chirality. Therefore, once the finite vector-chirality order appears, we can obtain the ferroelectric polarization if the local magnetic moment completely disappear with some fluctuation. 
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Vector-chiral (VC) order in quasi 1D system    

3 Introduction (2/7) 

S. Furukawa, M. Sato and SO, PRL 105, 257205 (2010). 

Gapless 

プレゼンター
プレゼンテーションのノート
Recently, it has been shown that the vector-chiral order appears in a frustrated spin-1/2 chain. The Hamiltonian is this one, where J_1 and J_2 are the nearest-neighbor and second-nearest neighbor coupling. Then, we always take positive J_2, which means the second-nearest neighbor coupling is always anti-ferromagnetic.  The easy-plane anisotropy is represented by the capital Delta. This figure shows the phase diagram of the zigzag chain. As you can see, the wide gapless VC phase with z-component of VC LRO (κ^z) is surrounded by two-different dimer phases and the Neel phase when the nearest-neighbor coupling is ferromagnetic. The detail of two dimer states will be discussed later. An important things that the gapless VC-chiral state is fragile to an infinitesimal interchain coupling, since it is mostly accompanied by a quasi-LRO of spins with gapless excitations and is eventually driven to a magnetic spiral LRO in three dimensions. 
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S. Furukawa, M. Sato and SO, PRL 105, 257205 (2010). 

Vector-chiral (VC) order in quasi 1D system    

4 Introduction (3/7) 

Gapless 

 Emergence of a spiral spin long 
range order (LRO) 

Spin excitation gap is required for 
VC LRO w/o spiral spin LRO. 

プレゼンター
プレゼンテーションのノート
Actually, these edge-shared cu-plate compound (, LiCuVO4, LiCu2O2, and  this Pb (lead) compound,) can be regarded as quasi-one-dimensional systems, however, such spin-spiral LRO and the associated ferroelectric polarization have been observed due to the infinitesimal 3D interchain couplings. Therefore, a spin excitation gap is required for protecting the VC ordered state without a magnetic spiral LRO.
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Gapless 

プレゼンター
プレゼンテーションのノート
With similar values of J1/J2 (∼ −2.7) and weak three dimensional couplings, however, Rb2Cu2Mo3O12 provides another prototype of spin-1/2 chain.
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 • Buckling of CuO2 plane 
 bond alternation 

Solodovnikov et al. (1997) 

• J1/J2 ~ -2.7 (J1 = -138K, J2 = 51K)  
 
 

• No magnetic order (T>2K) 
Hase et al. (2004) 

 

• Field-induced ferroelectricity (T<8K) 
 possible VC LRO w/o spin spiral 

Yasui et al. (2013) 
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CuO2 chains 

Rb MoO4 

a 

By courtesy of Yanagisawa et al.  

J2 

J1 

J1’ 

Introduction (5/7) 

プレゼンター
プレゼンテーションのノート
The crystal structure of the Rb2Cu2Mo3O12 is shown here. In this compound, each spin chain actually has an alternation in its nearest-neighbor coupling due to a weak crystallographic dimerization in the Cu-O-Cu bond.Since the each chain is well separated each other by inserting Rb and MoO4, the one-dimensionality of the systems is well retained.
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Field-induced ferroelectric system Rb2Cu2Mo3O12 

7 Introduction (6/7) 

S. Furukawa, M. Sato, SO, and A. Furusaki,   
PRB 86, 094417 (2012). 

Two candidate ground states: • Buckling of CuO2 plane 
 bond alternation 

Solodovnikov et al. (1997) 

• J1/J2 ~ -2.7 (J1 = -138K, J2 = 51K)  
 
 

• No magnetic order (T>2K) 
Hase et al. (2004) 

 

• Field-induced ferroelectricity (T<8K) 
 possible VC LRO w/o spin spiral 

Yasui et al. (2013) 
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Also, in this compound, it does not show a spontaneous symmetry breaking down to 2 K.Remembering the zero-field phase diagram, we can consider two candidate ground states: (i) One is a Haldane dimer state, that is, a Haldane state formed by spin triplet pairs of the ferromagnetically coupled nearest-neighbor spins, as it appears in the vicinityof the SU(2)-symmetric case. (ii) The other is an even-parity dimer state realized with large enough easy-plane magnetic anisotropy.
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Y. Yasui et al., J. Appl. Phys. 113, 17D910 (2013). 

Introduction (7/7) 

• Buckling of CuO2 plane 
 bond alternation 

Solodovnikov et al. (1997) 

• J1/J2 ~ -2.7 (J1 = -138K, J2 = 51K)  
 
 

• No magnetic order (T>2K) 
Hase et al. (2004) 

 

• Field-induced ferroelectricity (T<8K) 
 possible VC LRO w/o spin spiral 

Yasui et al. (2013) 
 

プレゼンター
プレゼンテーションのノート
These figures are recent experimental results for temperature dependence of magnetic susceptibility and electric polarization of Rb2Cu2Mo3O12 with increasing magnetic field. The results show that the applied magnetic field less than the spin gap induces a ferroelectric polarization in the absence of a magnetic spiral LRO without closing the spin gap, possibly realizing the genuine spin-gapped VC ordered state. 
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Experimental 
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 Propose a model which has gapped VC phases w/o any spiral 
spin LRO over a wide region of its parameter space. 

                                    Key: Bond alternation 
 Understand the model under low-magnetic field. 
                                    Key: Staggered scalar chirality 
 Understand symmetry-protected topological (SPT) phases. 
                                    Key: Neel LRO 

 Find a new type of ferroelectric transition 
 Rb2Cu2Mo3O12: Weak bond alternation 
 spin gap: ~ 0.2 meV ⇔ ~2 T 
 Ferroelectric transition at H ~0.1 T 

Key Motivation (1/1) 

プレゼンター
プレゼンテーションのノート
The main goals of this work are shown here. First goal is to propose a model which has gapped VC phases w/o any spiral spin LRO over a wide region of its parameter space. We clarify that to reach this goal, an existence of bond alternation in the nearest-neighbor bond becomes important. The second goal is to understand the proposed model under low-magnetic field, where we can obtain a field induced VC LRO phase with a spin gap.  We can reach this goal to treat a staggered scalar chirality coupling with the magnetic field. The 3rd goal is to understand symmetry-protected topological phases in our model. We will show the two gapped phases, Haldane-dimer phase and even-parity dimer phase, are characterized by different topologically-distinct string orders. Also we will show the two dimer phases are symmetry-protected topological (SPT) phases in the absence of the Neel LRO. Finally, we try to connect the properties of our model to experimental results of Rb2Cu2O3Mo12. 



Zero Field Case 

10 Zero Field Case (1/19) 

プレゼンター
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To reach the first goal, we start from a spin-1/2 XXZ model with the bond alternation in the ferromagnetic nearest-neighbor exchange coupling at zero magnetic field. The schematic picture of the model is shown here. The lower-case δ and upper-case Δ, respectively, represent the relative amplitude of the bond alternation and the easy-plane anisotropy.



Phase diagrams (δ=0) 
11 Zero Field Case (2/19) 

S. Furukawa, M. Sato, SO, and A. Furusaki,   
PRB 86, 094417 (2012). 

Numerical Detail 
DMRG (White, 1993) 
# of kept state m up to 500 
# of spin N up to 320 

プレゼンター
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We analyze the model numerically with the standard DMRG method. Therefore, the system boundary is always open, and the number of spin is always taken as a multiple of 4 so that the both edges are terminated by the stronger nearest-neighbor ferromagnetic-coupling. We are particularly interested in the parameter region inside of the red-dotted square. The reason is twofold: One is to consider a possible relevance to Rb2Cu2Mo3O12. The other is that a phase diagram becomes rich with finite bond alternation, as we will show later. First, we summarize the ground-state phase diagrams without the bond-alternation. Our DMRG calculations, in the left figure, mostly reproduce the previously obtained phase diagram. The gapless VC phase corresponds to this one（図を指す）, and D+ phase corresponds to this one(図を指す). In the next several slides, I will briefly explain the properties of each phase. 



Phase diagrams (δ=0) 
Even-parity dimer (D-) phase 

12 Zero Field Case (3/19) 

a spatial average only over N/2 spins located at 

for excluding the boundary effects[1]. 

[1] T. Hikihara et al., PRB 78, 144404 (2008). 

Dimer LRO: Gapped phase 

プレゼンター
プレゼンテーションのノート
Around the U(1)-symmetric case, there appears the even-parity dimer phase, which we refer to as a D- phase. This is characterized by the opposite signs of the z-component and x- or y-component dimer ordering amplitudes, shown here. Throughout this work, all the physical quantities are spatially averaged only over a central region of a open spin chain. We adopt this technique to exclude open boundary effects.
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Phase diagrams (δ=0) 

Gapless VC phase 

13 Zero Field Case (4/19) 

Gapless phase 

VC LRO 

プレゼンター
プレゼンテーションのノート
With increasing Delta, the gapless VC phase characterized by a finite z-component of the VC LRO appears in a wide range of the parameter space. In this phase, both x and z components of the dimer order disappear. 
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Phase diagrams (δ=0) 

Haldane-dimer (D+) phase 

14 Zero Field Case (5/19) 

Dimer LRO: Gapped phase 

プレゼンター
プレゼンテーションのノート
As the SU(2)-symmetric line (Δ = 1) is approached, the gapless VC phase is eventually taken place by the Haldane dimer phase, which we refer to as a D+ phase. The + represents that  x- and z-components of dimer ordering amplitudes have the same sign. 
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Phase diagrams (δ=0) 
Gapped VC dimer phases 
VCD+ phase 

 
 
 
 
VCD- phase 

15 Zero Field Case (6/19) 

[*] S. Furukawa, M. Sato, SO, and A. Furusaki, PRB 86, 094417 (2012). 

[*] 
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Also, there are narrow intermediate phases: a VCD+ phase where the VC order coexists with the Haldane dimer order and a VCD− phase where the VC order coexists with the even-parity dimer order.Actually, it has been shown in previous work that the VCD+ appears only inside the red shaded area.

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
{\rm D}_-
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
{\rm VCD}_+
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
\big( {\rm Ave}_j \langle \hat{D}^{x}_{j} \rangle \big)\big( {\rm Ave}_j \langle \hat{D}^{z}_{j} \rangle \big) < 0, 
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
\big( {\rm Ave}_j \langle \hat{D}^{x}_{j} \rangle \big)\big( {\rm Ave}_j \langle \hat{D}^{z}_{j} \rangle \big) > 0,~
\end{align*}


Phase diagrams (δ>0) 
16 Zero Field Case (7/19) 

VCD0 region 
Gapless nature 

where 

VC LRO 
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Now we introduce a small bond alternation to the nearest-neighbor coupling. The phase diagram for lower_case δ= 0.02 and 0.04 are shown here. A small bond alternation narrows the VC ordered region, which is now endowed with a spin gap in spin excitations, yielding VCD+ and VCD− phases.It is noteworthy that VCD+ and VCD− are separated by a boundary at which the energy gap is closed in the black shades region. We call the ground state in the shades region as VCD0, where the only z-component of the dimer order parameter disappears.
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{\rm Ave}_j \langle \hat{D}^{x}_{j} \rangle \neq 0,~ {\rm Ave}_j \langle \hat{D}^{z}_{j} \rangle = 0.
}
\end{align*}


Phase diagrams (δ>0) 
Effect of δ  

17 Zero Field Case (8/19) 

Gapless VC 

Turn on small δ 

VCD+ 

VCD- 

line/phase 

VCD0 

N=320: 

N∞  : narrower than 

プレゼンター
プレゼンテーションのノート
This VCD0 phase boundary either occurs at a line or form a stable gapless VC dimer phase. We can estimate an upper bound for the width of a possible VCD0 phase, then we conclude the region is narrower than 0.004 after the extrapolation with respect to the number of spin. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
({\rm VCD}_0)
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
({\rm VCD}_0)
\end{align*}


Abelian bosonization analysis 

18 Zero Field Case (9/19) 

Start from decoupled XXZ chains: 

1.  J1 coupled two chain: 
 
 
 
2.  Mean field decoupling of the     sector 
    (valid in VC, Neel, and/or dimer phases) 
 
3. Self-consistent solution to two sine-Gordon problems  
 
    for                       and 

This analysis for δ=0: Nersesyan. et al., (1998)  
                                S. Furukawa, M. Sato, SO, and A. Furusaki, PRB 86, 094417 (2012). 

プレゼンター
プレゼンテーションのノート
To gain a more insight on the gapped VC phases, we perform an Abelian bosonization analysis. Today, I don’t have enough time to explain the details of the bosonization analysis, so I just give a summary. The bosonization starts from two decoupled XXZ chains. To treat the coupled chains by the nearest-neighbor interaction J_1, it is useful to introduce the bosonic field for symmetric(+) and anti-symmetric(-) sectors. And K_+ and K_- are the associated Tomonaga-Luttinger parameters. After representing all the interaction terms with these + and - bosonic fields, we introduce mean field decoupling of the plus-minus sector. This approximation is valid when the VC, Neel and/or dimer LRO exists, because both plus-minus sectors are locked in such ordered phases. Once we introduce the MFA, we can obtain the self-consistent solution to two sine-Gordon problems for these four values.

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
\nu = \pm
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%2B%7D%20%2B%20%5Cmathcal%7BH%7D_%7B-%7D%20%2B%20%5Cmathcal%7BH%7D_%7B%5Crm%20int%7D%0A%5Cend%7Balign*%7D


Transition from VCD+ to VCD- 
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VCD± Phase 

VC LRO: 

  z-component of dimer LRO: 

x, y-component of dimer LRO: 

Sign changing of 

Absence of Neel LRO: 

Zero Field Case (10/19) 

Required 
conditions 

for absence of Neel LRO 

プレゼンター
プレゼンテーションのノート
These four values are associated with Neel LRO, VC LRO, z-component of dimer LRO, and x, y-component of dimer order.  In VCD_/pm phases, the four condition are satisfied. And these two relations are also requires in VCD± Phases. As the system changes from VCD+ to VCD-, a sign changing occurs in z-component of dimer order parameter, which means the value of read squared region approach to 0. However, this violates the condition of this inequality, unless K+ accidentally decays to unity in such a way that this inequality is always satisfied.

http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%5Cpropto%20J_1%20%5CDelta%20%5Cdelta%0A%5Cend%7Balign*%7D
http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0A%5Cpropto%20J_1%20%5CDelta%20%5Cdelta%0A%5Cend%7Balign*%7D


20 Zero Field Case (11/19) 

Possibilities: 

(1) An accidental direct continuous transition 
 
                                              are satisfied at a single point. 
 

(2) Gapless VCD0 phase    (       is unlocked.) 
 

(3) Neel LRO at a transition point 
 

(4) VCND phase sandwiched by VCD± phases 

VCD± Phase 

VC LRO: 

  z-component of dimer LRO: 

x, y-component of dimer LRO: 

Absence of Neel LRO: 

プレゼンター
プレゼンテーションのノート
Under this situations, we can consider four possibilities of the transition: An accidental direct continuous transition occurs when the disappearance of this value and the unity of K+ are satisfied at a single point accidentally.  (2) more in general, an extended area of a gapless VCD0 phase appears. There are 3rd and 4th possibilities associated with Neel LRO, however, from our DMRG calculations, the Neel LRO does not appear in this transition. Therefore, we can support (1) or (2) scenario.

http://maru.bonyari.jp/texclip/texclip.php?s=%5Cbegin%7Balign*%7D%0AK_%2B%20%3D%201%0A%5Cend%7Balign*%7D


String correlation functions 

21 Zero Field Case (12/19) 

where 

Distinction of two dimer phases: 

E. H. Kim et.al, PRB 62, 14965 (2000), and references therein. 

1 0 -1 0 1 0 -1 

1 -1 0 0 1 0 -1 0 

A particular spin configuration 

D-  
VCD- 

D+  
VCD+ 

Phase LRO 

プレゼンター
プレゼンテーションのノート
The string order is a useful tool to distinct two dimer phases as well as the relative sign of z-component and x,y-component dimer order parameter. The definition of the string correlation is given here. There are two-type of string orders of ell = 1 and 2, we refer to as string1 and string2.In the first line for D+ and VCD+ phases, we only have the string1 order in our DMRG calculation. In this ordered phase, a hidden alternated structure on stronger bonds emerges as shown here. The orange circle on a stronger nearest-neighbor bond means the summation of Sz for a pair of spin. If you remove all the pairs having total Sz = 0, you will see Sz=1 and Sz=-1 appear alternatively. In the same manner, only string2 order appears in D- and VCD- phase, where the pair of spins are taken on weaker nearest-neighbor couplings. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
S^z_{2j+2} + S^z_{2j+3}:
\end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
S^z_{2j+1} + S^z_{2j+2}:
\end{align*}


Order parameter and  
Entanglement Entropy 

22 Zero Field Case (13/19) 

 J1/J2 = -2.5, δ = 0.02 

∆ 

Entanglement Entropy: 

around critical:  

Critical:  

c: central charge 

プレゼンター
プレゼンテーションのノート
The direct calculation of order parameters gives the same phase diagram as I have already shown you. So, this gives nothing new, and I'll skip this. But it is interesting to reveal a critical properties at continuous transitions. Actually, a criticality in the phase diagram can be probed through the bipartite entanglement entropy which can be calculated in the reduced density matrix in DMRG. The entanglement entropy scales with the upper relation around a criticality or with lower relation at the criticality, where c is a central charge, ξ is the relevant correlation length, and S0 is a nonuniversal constant. 



Order parameter and  
Entanglement Entropy 

23 Zero Field Case (14/19) 

 J1/J2 = -2.5, δ = 0.02 

∆ 

 Z2 symmetry 
VC LRO: Breaking 

プレゼンター
プレゼンテーションのノート
Lower figure shows the entanglement entropy as a function of easy-plane anisotropy. It exhibits a discontinuous jump by log 2 around Δ = 0.73, which is ascribed to a Z2 symmetry breaking in the reduced density matrix. 



Order parameter and  
Entanglement Entropy 

24 Zero Field Case (15/19) 

 J1/J2 = -2.5, δ = 0.02 

∆ 

 Z2 symmetry 
VC LRO: Breaking 

 Z2 symmetry 

VC LRO: Recovering  
Edge spin: Breaking  

プレゼンター
プレゼンテーションのノート
A peak around Δ=0.92 is suggestive of the phase transition between the D+ and VCD+ phases. At this peak, we do not observe a recovery of log 2 in the entanglement entropy, even though the VC LRO disappears for Δ > 0.914. This is because another Z2 symmetry breaking associated with the edge spin occurs concomitantly with the disappearance of the VC LRO in the density matrix, asshown in upper figure.



Criticality at the D--VCD- boundary 
P. Calabrese and J. Cardy, J. Stat. 
Mech. (2004) P06002. 

25 Zero Field Case (16/19) 

プレゼンター
プレゼンテーションのノート
Actually, the entanglement entropy depends on the position at which the system is split into two. In particular, at criticality, entanglement entropy behaves like this equation in the open boundary condition, where ℓ is the number of spins involved in either side of two split subsystems. The coefficient c_tilde asymptotically approaches the central charge for the criticality with increasing the system size. On the other hand, in an off-critical region where the correlation length ξ of the system is finite, the entanglement entropy becomes saturated and thus c_tilde should decay to zero as the number of spin for a subsystem ℓ and N increase much larger than ξ. The fitting procedure is found to be successful around the D−–VCD− boundary. The result obtained for c_tilde is shown in the left figure. Pursuing the peak position in c_tilde, it is clear from the right-top figure that it is extrapolated to the almost same critical value ( Δ = 0.7095 ) as we obtained by examining the system-size-dependence of the long-range behavior of VC correlation function. Then, we can see that the value of c_tilde for the Δ_{cr} reasonably converges to the value 1/2 of the Ising universality class. 



Entanglement Spectrum 
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D+ and D- are SPT phases distinct in 
the absence of the Neel LRO. 

: 

: 

(odd-parity dimer) 

(even-parity dimer) 

: Entanglement Spectrum 

Zero Field Case (17/19) 

プレゼンター
プレゼンテーションのノート
The entanglement spectrum, zeta, given by this relation, help us understand the ground states from a viewpoint of SPT phases. This table shows the degeneracy of the lowest-entanglement spectrumζ1 in D+ and D- for two ways of splitting the chain into two: On the left, it is cut at a stronger J1 bond. On the right, it is cut at a weaker J1 bond. The D+ and D- ground states have a different string order and a different relative sign of z-component and x-component of dimer order parameters. So we can naturally consider the schematic picture of the ground state in our particular boundary condition for D+ and D- as shown here. When the chain is split at a stronger J1 bond, the lowest spectrum becomes double degenerate in D± reflecting the Kramers degeneracy. In particular D+, the degenerated state is appear at the edge. Therefore, when the chain is split at weaker J_1 in D+, a odd-parity dimer is also split and the lowest spectrum becomes fourfold degeneracy.On the other hand, in D- phase, the splitting of even-parity dimer does not occur when the system is divided at a weaker J1. As the result, the non-degenerate spectrum is obtained. As we discussed later, once the Neel LRO appears, the two types of string orders emerges simultaneously. This reflects that the absence of the Neel LRO is one of the symmetries that protect the distinction between the D+ and D− phases in the sense of SPT phases. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
{\rm Degeneracy~of~}\zeta_1 
\end{align*}


Entanglement Spectrum 
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VCD+ and VCD- have different string orders. 
  Distinct SPT? 

Zero Field Case (19/19) 

(Time reversal) 2 

× 
(VC LRO) 2 

(VC LRO) 2 

プレゼンター
プレゼンテーションのノート
The schematic picture of VCD± are given in the table, where clockwise and counter clockwise of the arrows means twofold degeneracies arising from the vector chirality. When the chain is split at a stronger J1, the lowest entanglement spectrum becomes fourfold degeneracy reflecting the time reversal symmetry and the vector chirality. On the other hand, when the chain is split at a weaker J1, the lowest entanglement spectrum becomes twofold degeneracy reflecting only the vector chirality. As we discussed, VCD+ and VCD- have different string orders. This difference in the string orders may suggest that these two phases are distinct SPT's. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
{\rm Degeneracy~of~}\zeta_1 
\end{align*}


Low-field case without 
Magnetization 

28 Low-field case without Magnetization  (1/4) 

プレゼンター
プレゼンテーションのノート
Now, we turn on the magnetic field h along the z direction. The leading h-linear term is, of course, the Zeeman term and the next-to-leading is a field induced ring-exchange interaction, which is shown here, where g is a linearized coupling constant proportional to a magnetic flux penetrating the triangle formed by three sites involved. The sign of the flux alternates every other triangle, as shown in this schematic picture, and hence it is proportional to the staggered scalar spin chirality. When the ground state has an energy gap as in the D± and VCD± phases, however, the Zeeman term does not play any role at a much smaller Zeeman field than the energy gap. At such low field, only this staggered scalar chiral interaction gives a nonvanishing contribution. In this respect, it is useful to consider its roles. 



VCND 

VC Neel Dimer (VCND)  phase 
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z-component of 
staggered spin  

x-component of 
staggered spin  

Correlation functions at      . 

Low-field case without Magnetization  (2/4) 

J1/J2 = -2.5  
δ = 0.02 

String 2 

String 1 

VC z-component 
of dimer x-component 

of dimer 

プレゼンター
プレゼンテーションのノート
Now we tackle a phase diagram of this Hamiltonian in the space of Δ and gh near the zero-field VCD−-D− phase boundary. The results are summarized in top right figure. When we turn on gh starting from VCD-, we obtain VC Neel dimer phase immediately. The correlation properties of the VCND phase are shown in lower figures. As you can see, VC correlation functions, dimer correlation functions and z-component of staggered spin correlations becomes finite with respect to the distance in the VCND. We confirm, once the Neel order emerges, the both string orders appears, which mean allowing the Neel order, two dimer phases, D+ and D-, are connected topologically. On the other hand, when we turn on gh starting from D-, the VCND phase does not appear immediately. Then, increasing gh, we obtain VCND at a critical value. We can understand this phase diagram from the bosonization analysis in the next slide. 



Bosonization analysis 

30 Low-field case without Magnetization  (3/4) 

VCND Phase 

VC LRO: 

  z-component of Dimer LRO: 

xy-component of Dimer LRO: 

Neel LRO: 

at zero filed 
at finite field 

Associated with 
Neel LRO 

Associated with 
VC LRO 

∝ gh 

∝ J1 

プレゼンター
プレゼンテーションのノート
In the VCND phase, the Neel order parameter is linearly coupled to the VC through the field induced staggered scalar chiral interaction. and thus the Neel LRO is induced by an infinitesimally small gh if we start from the VCD± phase. 



VCND 

VC Neel Dimer (VCND)  phase 
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Correlation functions at      . 

Low-field case without Magnetization  (4/4) 

J1/J2 = -2.5  
δ = 0.02 

z-component of 
staggered spin  

x-component of 
staggered spin  

String 2 

String 1 

VC z-component 
of dimer x-component 

of dimer 

プレゼンター
プレゼンテーションのノート
In the VCND phase, both of the time-reversal and the parity symmetries are spontaneously broken, but their product is fixed by the ring exchange term. The schematic picture of VCND state is in the table, where red and blue arrow indicate positive and negative of z-component spin. Hence, there remains only the double degeneracy associated with a pair of Neel and VC order parameters irrespective of cutting position. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
{\rm Degeneracy~of~}\zeta_1 
\end{align*}


Case at moderately large 
magnetic field:  
Zeeman interaction 

32 Case at moderately large magnetic field: Zeeman interaction  (1/2) 

プレゼンター
プレゼンテーションのノート
At a moderately large magnetic field, the Zeeman field can be comparable to the zero-field energy gap and induce a finite magnetization. Then, we need to consider the total Hamiltonian, which includes the Zeeman term. 
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Field induced 
VCND Phase 

Phase diagram without       :  

Turn On! 

  If the system starts from D+ 
 

      The field Induced VCND  
         does not appear. 

Case at moderately large magnetic field: Zeeman interaction  (2/2) 

プレゼンター
プレゼンテーションのノート
We focus on the parameter region in the vicinity of the zero-field VCD−–D− phase boundary. The results on the phase diagram for Δ=0.71, 0.708, and 706 are summarized in the right three figure: The vertical axis is magnetic field, and the horizontal axis is taken as 1/g. If we apply the magnetic field to the VCD−ground state, for example Δ=0.71, the VCND phase appears as soon as we turn on the field. With increasing field h, the S^z_tot of eigenvalue of the ground state changes from 0 to 1, which signals an onset of a finite uniform magnetization.On the other hand, the D− ground state is stable up to a certain magnetic field, and the ground state changes from D- to VCND without magnetization, but this occurs at a finite magnetic field h for large g. Decreasing Δ from the D−–VCD− phase boundary narrows the VCND phase in the space of h and 1/g. We have also performed DMRG calculations stating from the D+ phase, however, the filed induced VCND does not appear. 

http://maru.bonyari.jp/texclip/texclip.php?s=\begin{align*}
\texttype{ \hat{\mathcal{H}}_{Z} = -h \sum_i \hat{S}^z_i }
\end{align*}


Summary 
Investigate  

 

Gapped phases: 
Dimer phases at zero-filed  
Gapped vector chiral dimer phase at weak field 

 

A possible relevance to experiments of Rb2Cu2Mo3O12 
Our model: Bond alternation of J1: 2 %,  
                                   Spin gap: ~ 0.02 J2  
Rb2Cu2Mo3O12: J1 = -138K, J2 = 51K 
     Alternation of the Cu-O-Cu angles: ~1 % @ 300K 
                        (Intensity of the alternation may increase at a low-T.) 
     Spin gap: 0.2meV ⇔ ~2K ~ 0.04 J2 

 
 

34 Summary  (1/1) 

プレゼンター
プレゼンテーションのノート
Finally, I summarize of my talk. We have investigated a J1-J2 frustrated XXZ spin-1/2 chain with the bond-alternated nearest-neighbor ferromagnetic exchange coupling. Introducing the bond alternation and the staggered scalar spin chirality coupled with the magnetic field, we obtain filed induced vector-chiral Neel dimer phase. Since the VCND phase has a finite spin gap, it is stable with respect to infinitesimal inter chain couplings in three-dimension. Finally, we address a possible relevance to experiments in Rb2Cu2Mo3O12. This compound exists a crystallographic dimerization in the Cu-O-Cu bond. It is likely that at lower temperatures than the spin gap, the magnitude of the dimerization is enhanced by correlations, so that our choice of δ might be within a practical range.



Thank you for your attention! 
謝謝！ 
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