Dirac vs. Weyl in topological
iInsulators: Adler-Bell-Jackiw
anomaly in transport phenomena

Heon-Jung Kim (Daegu Univ.), Ki-Seok Kim
(POSTECH), J.-F. Wang (Huazhong Univ.), M.
Sasaki (Yamagata Univ.), N. Satoh (Iwaki
Meisei Univ.), A. Ohnishi, M. Kitaura,

M. Yang, L. LI

arXiv:1307.6990



Observation of Weyl metal

Figl,lre l(a) Schematic band structure of Bi, ,Sb, near the L point
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TwoO cornerstones In
modern condensed maitter
physics

Symmetry * Topology

“Topological” Landau Fermi liquid theory 272
“Topological” Landau-Ginzburg framework
for phase transitions 27



Toward interacting topological
states of matter & Topological metal

reek ending
PRL 110, 136601 (2013) PHYSICAL REVIEW LETTERS 20 MARCH 2013

Weyl Semimetal in a Topological Ins

Topological Phase Transitions Driven by Magnetic Phase Transitions

|&d Selected for a Viewpoint in Physics in Fe,Bi,Te; (0 < x < 0.1) Single Crystals
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Superconductivity of doped Weyl semimetals: Finite-momentum pairing and
electronic analog of the *He-A phase
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PRL 109, 066401 (2012) PHYSICAL REVIEW LETTERS We study superconducting states of doped inversion-symmetric Weyl semimetals. Specifically. we consider a

lattice model realizing a Weyl semimetal with an inversion symmetry and study the superconducting instability
in the presence of a short-ranged attractive interaction. With a phonon-mediated attractive interaction, we find
two competing states: a fully gapped finite-momentum Fulde-Ferrell-Larkin-Ovchinnikov pairing state and a
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is energetically favored over the usual even-parity paired state and is robust against weak disorder. Although
energetically unfavorable, the even-parity pairing state provides an electronic analog of the *He-A phase in that
the nodes of the even-parity state carry nontrivial winding numbers and therefore support a surface flat band. We
briefly discuss other possible superconducting states that may be realized in Weyl semimetals.
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Anomalous transport
‘phenomena in topological
states of matter

Topological terms associated
with (quantum) anomalies




(Quantum) anomalies

From classical theory to quantum theory =2 Nontrivial global
structures of ground-state manifold sometimes violate classically
respected conservation laws at quantum levels, referred to as
(quantum) anomalies.

Heisenberg vs. Feynman

Anomalies associated with local (gauge) symmetries must be
cancelled for consistency of quantum theory (standard model &
string theory).

Anomalies associated with global symmetries give rise to exotic
physics.

Quantum number fractionalization in solitons (Goldstone-
Wilczek currents), deconfined quantum criticality (emergent
non-abelian chiral anomaly), gapless boundary states and
anomalous (quantized) electrical & thermal (Hall) transport
phenomena, ...

Chiral anomaly (3+1, 1+1), parity anomaly (2+1), Witten

Annmalv (3+1)



Topological (anomaly) terms vs.

anomalous transport phenomena

 Parity anomaly (Semenoff, Haldane, Fradkin, --) =) Chern-Simons

term: Quantum Hall effect MO,W

= /@E (0, (0 +1A,) + MY oo S = [z’sgg?gm) — isggiM)] /e“mAﬁyA,x

o Chiral (Adler-Bell-Jackiw) anomaly =) @ (€.B) term: Half-quantized
Hall conductance when g = ;7 (time reversal symmetry) in

topological insulators
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 Delocalized gapless surface states aqainst Anderson localization duve
to the presence of topological terms such as WZW, theta, and 22
terms in the nonlinear sigma model formulation



Adler-Bell-Jackiw anomaly (1d)
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Fig. 1. Dispersion laws for the RH (a) and LH (b) Weyl fer-
mions in 1 + 1 dimensions. The black and white points de-
note the filled and unfilled levels and the arrows indicate the
direction of the movement of the Fermi surface when E 1inon.



Wevyl vs. Dirac (semimetal)
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FIG. 1. Proposed phase diagram in terms of ( H M)forb<0
in Hamiltonian Eq.(4): (A),(B) Topological band gap M is
larger than magnetization mass H, thus we are in the insu-
lating phase. We have a topological band insulator (A) for
M > 0 and trivial insulator (B) for M < 0. (C),(D) Magne-
tization mass is stronger than the topological band gap, and
we have a Weyl semimetal phase. Note that if H _, —H
then two Weyl points change the sign of the chirality. At the
tra,nsition;T = |M|, two Weyl points meet each other and Gil Young ChO, 1110.1939vy2

result topological or trivial insulators.



Adler-Bell-Jackiw anomaly (3d):
Ultra-quantum limit
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Adler-Bell-Jackiw anomaly (3d):

Semi-classical regime

Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals
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Magnetoelectric effect

e Local curvature effect vs. global topological effect

» Local curvature effect = Transverse (inverse AC

effect) phenomena vs. longitudinal (magneto-elastic

coupling) phenomena

 Global "topological” effect = Longitudinal phenomena

from the chiral anomaly (axion electrodynamics -

Wilczek)
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‘Negative” longitudinal
magnetoresistivity

Adler-Bell-Jackiw anomaly
in Weyl metals




Longitudinal magnetoresistivity
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Theoretical analysis
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Theory: Loventz force + Berry curvature

(in the absence of weak anti-localization)
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Theory: Quantum Boltzmann equation
approach + semi-classical equation of motion

(for weak anti-localization)
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Final expression of longitudinal MR
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Discussion: Ultra-quantum [imit

vs. semi-classical regime

¢ Semi—classical regime:. Chemical potential is much larger
than the cyclotron frequency

e Ultra—quantum Iimit. Both chemical potential and temperature
are less than the energy gap between the lowest and first
Landau levels.

® Since only chiral branches of the spectrum are occupied,
dynamics of these electrons are essentially the same as that
of one—dimensional chiral fermions, where intra—node
scattering is prohibited. As a result, the effect of the
Adler—Bell—Jackiw anomaly becomes enhanced, where the
longitudinal current can be relaxed by inter—node scattering
only. In this ultra—quantum I|limit, the correction term of the
longitudinal MC is linearly proportional to B due to one—
dimensional chiral dynamics, distinguished from the case of
the semi—classical regime.

* All analysis based on the ultra—quantum |imit failed to
explain our experimental data consistently, indicating that



“Topological” Hall effect
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Conclusion

* Claim: Dirac metal + time reversal symmetry breaking
=> Weyl metal

* Experimental observation: “Negative” longitudinal
magnetoresistivity & “topological” longitudinal and
transverse Hall effects

* Explanation: Dynamics of these Weyl fermions is
constrained topologically when their currents are
applied in the same direction as the momentum to
connect the two Weyl points, referred to as the Adler-
Bell-Jackiw anomaly and described by the topological

0 (E - B) term.



Confirmation of Weyl metal

Figl,lre l(a) Schematic band structure of Bi, ,Sb, near the L point
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Jrom S. Ryu's talk
m9(U(2N)/U(N) x U(N)) = Z in APCTP
Field theory (Pruisken): '

o-model with topological term
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- topological term = phase of fermionic determinant

von Klitzing 80 ; Nobel Prize "85
- for the Dirac model, topological term can be computed
from chiral anomaly
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SR, Mudry, Obuse, Furusaki (07)

microscopic model:
( P ) H =vp (Jmpm + O'ypy) + V(I") From S. Ryu’s talk
‘ ' in APCTP

l oy, H* (—ioy) = H

(effective field theory: non-linear sigma model)

Q(r) = O(4N)/[O(2N) % O(QN)] (diffusive motion of electrons)
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