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Entanglement and quantum quenches
@ Entanglement entropy in condensed matter physics
@ Quenches from (conformal) field theory

Local quenches in finite-size 1d systems

@ The cut and glue quench

o Light-cone effects: Entanglement entropy and Loschmidt echo
@ Does the extrapolation length hide somewhere?

Entanglement and a (bipartite) fidelity
@ Orthogonality catastrophe

@ Universal scaling functions

@ Higher dimension
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Entanglement entropy

Bipartition

B [von Neumann, 1955]

@ [¢) ground state of Haup

o pa=Trp ) (Y]

0 S=—-Trpalnpy

Extended quantum system: Schmidt decomposition

° [¥h) =3, Ci|¢f4>‘¢§9> <¢§z|’¢)6/> = 03 00y
e S = —Ziczzlnc?
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Entanglement entropy

Bipartition

B [von Neumann, 1955]

@ [¢) ground state of Haup

o pa=Trp ) (Y]

0 S=—-Trpalnpy

Extended quantum system: Boundary law

@ correlation length &, dimension d.
o S(L) =aL?! +o(L4 )
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Entanglement entropy (2/2)

Why studying this quantity?
@ How to store efficiently quantum states in a computer?

@ Tool to distinguich between subtly different phases of matter.

In (Tt p")

@ Replica trick: S = lim
n—11—n
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Entanglement entropy (2/2)

Why studying this quantity?

@ How to store efficiently quantum states in a computer?
@ Tool to distinguich between subtly different phases of matter.

@ Replica trick: S = lim In (Tr p")

n—1 n

Classic results

—
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o 1d critical systems: S = £ In/ + cst + o(1) [Holzhey et al, NPB
1994 — Vidal et al, PRL 2003 — Calabrese & Cardy, JSM 2004]

@ Topological order in gapped systems: S = aL + Siopo + 0(1)
[Kitaev & Preskill, PRL 2006 — Levin & Wen, PRL 2006]

@ Entanglement spectrum [Li & Haldane, PRL 2008]

Issues

| A

o Difficult to compute in dimension d > 1

@ What about experiments?  [Cardy, PRL 2011]
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Global quench

[Calabrese & Cardy, PRL 2006 — Cardy, Talk in Florence 2012]

Type of quench studied

Initial (translational invariant) state |¢(0)) in a gapped phase.
Let evolve with the critical Hamiltonian H.

Look at large distances and late times, hope for universality.

e 6 o6 o

Physical picture: entangled quasiparticles emitted everywhere.
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Global quench

[Calabrese & Cardy, PRL 2006 — Cardy, Talk in Florence 2012]

Example of the one-point function. Use imaginary time.

(O@t)) = (®(0)[e™ O™ |1 (0)) — ((0)[e™ O™ 4(0))
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°

Global quench

[Calabrese & Cardy, PRL 2006 — Cardy, Talk in Florence 2012]

T2

o0

1

|1(0)) not too far from a boundary state | B))

6(0)) = exp (—Z;j; /a %(az)dx) 1B))

The least irrelevant operator should be the stress-tensor T.

o We have 3~ [, T'(z)dz = A\ H
o (0) = <<B‘e(*TQﬁL)\T)HOe(*Tl*)\T)H‘B>>



Quantum quenches

Global quench

[Calabrese & Cardy, PRL 2006 — Cardy, Talk in Florence 2012]

o At is the extrapolation length.

(O(1)) ~ exp (—;ATt)

@ Relaxation time may be modified by the other operators.
@ Those are needed to find a Generalized Gibbs ensemble for the
steady state.

@ Does Ay play a role in the local quench, and if so, can we
measure it?
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@ Local quenches in finite-size 1d systems
@ The cut and glue quench
o Light-cone effects: Entanglement entropy and Loschmidt echo
@ Does the extrapolation length hide somewhere?
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The “cut and glue” local quench

—————————+—— H, 5= H4 + Hg + H™

—t—t—t—t—t - ——t——t—i Hygp = Ha+ Hp

[¥(0)) = |4) ® |B) = |A® B)
Let evolve with the full Hamiltonian
[W(t)) = 1P| A® B)

Natural if one thinks of defects, Fermi-edge singularity, . ..
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A simple example: XX chain (or itinerant fermions)
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A simple example: XX chain (or itinerant fermions)

1
Hyup = ) Z (C}L-ch + h.c) = —Zcoskdldk
j=1 k

1

| Fermi Sea
= 0
-1

0 /2 T
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A simple example: XX chain (or itinerant fermions)

1 T

L-1
1
Haup = 5 Z (c;f-ﬂcj + h.c)
7j=1 = 0
= — Z cos k d;dk
k -1
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A simple example: XX chain (or itinerant fermions)

Haup = Z(T cj—i—h.c) .

Fermi Sea

0.04

pk) = ’(A U B|dldg|AU B) — (A® B|dldy|A® B)

[[ E=04——
g . L =256 —a—
P L =1024 —e—

@ Excitations concentrate at
the Fermi level kp = 7/2.

@ = Linearization = CFT!
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Conformal spectrum and quasiparticles

Low energy spectrum described by CFT

a8 . 2
En(L)=aL+b+ " - (hn 24)+(’)(1/L) ., hneN
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Conformal spectrum and quasiparticles

Low energy spectrum described by CFT

a8 2
E(D—ﬂL+h%L @n M)+ouﬂn ., hneN

=> |1(t)) periodic with period T'= 2L /vp

Quasi-particle interpretation
t 1
2L T4~ ---1 =
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Conformal spectrum and quasiparticles

Low energy spectrum described by CFT

o 2
En(L)=aL+b+ " - (hn 24)+O(1/L) ., hneN
=> |1(t)) periodic with period T'= 2L /vp

" . e Entanglement entropy
or L4 i S(t) = —Tr [p(t) In p(t)], extending
[Eisler & Peschel, J. Stat. Mech. 2007]
[Calabrese & Cardy, J. Stat. Mech 2007],

205 +- 4= -

@ Loschmidt echo

9L 4 +-4-#2-2 - L(t) = |(¥(®)[1(0))?

[JMS & Dubail, J. Stat. Mech. 2011]
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An example: Loschmidt echo in CFT

L0r) = ‘<A®B|€_THAUB|A®B>‘2 Keep in mind
T — 1wpt, but only at the end.

F(1t) = —InL(7) is a free energy!
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An example: Loschmidt echo in CFT

L(r) = ‘<A®B|€_THAUB|A®B>‘2 Keep in mind
T — 1wpt, but only at the end.

F(1) = —1InL(7) is a free energy! [Cardy & Peschel, Nucl. Phys. B 1988]

L/2 L/2 Corner singularities and the Cardy-Peschel formula

Here we have corners with 6 = 27, and we have to
leading order

F(r) = g In L + subleading terms
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An example: Loschmidt echo in CFT

L(r) = ‘<A®B|€_THAUB|A®B>‘2 Keep in mind
T — 1wpt, but only at the end.

F(1) = —InL(7) is a free energy! [Cardy & Peschel, Nucl. Phys. B 1988]
L/2 L/2 Logarithmic Loschmidt echo
L T
ol ()
F(1) n|—sinh (—
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An example: Loschmidt echo in CFT

L(r) = ‘<A®B|€_THAUB|A®B>‘2 Keep in mind
T — 1wpt, but only at the end.

F(1) = —1InL(7) is a free energy! [Cardy & Peschel, Nucl. Phys. B 1988]

L/2 L/2 Logarithmic Loschmidt echo

F(r)= Eln %sinh (77_;)

- Back to real time

c L . TUEt
.F(t)—zln ;sm( T )‘

\
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Numerics tests, symmetric case Ly = L = L/2

Loschmidt echo

1.4
1.2 CFT

0.8
0.6

(1) = —log L(7)
>
=
D
el

0.4
0.2

0 0.5 1 1.5 2 25 3 35 4
(vp/L)t =7
Previous numerical result for S(t) [igléi, Szatméri & Lin, Phys. Rev. B 2009]
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Numerics tests, symmetric case Ly = L = L/2

Loschmidt echo Entanglement entropy

1.4 T T v T 2.2
1.2 CFT

0.8 —

(1) = —log L(T)
b
S
/:
L
\}
=
\\
7
\\
J
J

£ 14
0.6 0
0.4 1
0.2
0 0.6
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

(vp/L)t =7 (vp/L)t =7
Previous numerical result for S(t) [igléi, Szatméri & Lin, Phys. Rev. B 2009]
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Numerics, non symmetric case L4 = L/3 (1)

Loschmidt echo

Fla) = zlnL—i—iln

a*(a+1)%(a+2)(2a+ 1)
(a—1)7 ‘

a is one of the solutions of
p= 2L Ly (021) | 2y, (ab
T 13 \b+1/) T3 \aro

b2:aa+2
2a +1
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Numerics, non symmetric case L4 = L/3 ()

F(t) = —log L(T)

0 2/3 1/3 9
(vp/L)t =T
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Numerics, non symmetric case L4 = L/3 ()

21
L=6144 o
2 CFT
®
Q@
219
| o
18|
x
N gt
1.6
0 2/3 4/3 2
(vr/L)t =7
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Numerics, non symmetric case L4 = L/3 (Il)

Entanglement entropy

- {4(1—36) [17—005(37rt)] Cos(%)—?@\/ﬁ(l—s)w /1+16e—cos(3mt) sin( %) }1/3
fet) = (@2 5 (32)

With f. = g + ih, and the derivative f. = g/ + ih., we have

_¢ [he(t))”

S(t) 3 InL + 12111{ [3% wc? (%) —i—gé(t)]Z B 3[h’6(t)]2} + cst.
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Numerics, non symmetric case L4 = L/3 (ll)

9 L =3072 ° o
L = 1536 A A:
18 - CFT
1.6
0 1/3 2/3

(vp/L)t = T



Numerics, non symmetric case L4 = L/3 (ll)

0 2)3 4)3 2 8)3 10'/3 1 14'/316'/3 6
(vp/L)t =T
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Numerics, non symmetric case L4 = L/3 (ll)

1 i i i i i h i i
0 2/3 4/3 2 8/310/3 4 14/316/3 6
(vp/L)t =T

In the plateau region, CFT prediction (S(t) = cst) breaks down
Observed before in [Eisler, Karevski, Platini & Peschel, J. Stat. Mech 2008]
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Corrections to scaling [Dubail & JMS, in preparation]

o Lattice-effects captured by the leading irrelevant operators.
@ One is the stress-energy tensor T'(z). It is always there.
@ Perturbed (boundary) CFT:

S — Scrr + /\l T(z)dz
2T o
A7 is the extrapolation length. Crucial role in
(a) Global quench [Calabrese & Cardy, Phys. Rev. Lett 2006]
(b) Entanglement spectrum/Edge spectrum correspondence
[Qi, Katsura & Ludwig, Phys. Rev. Lett 2012]
[Dubail, Read & Rezayi, arXiv 2012]

@ Here, we have an exotic correction:
c InL .
F,S=-InL+f(r)+Arx g(T)T +other subleading terms

(General consequence of a 27 corner singularity + finite-size)
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@ Here, we have an exotic correction:

InL
F,. S = ¢ In L+ f(7)+ A\ % 9(7)% +other subleading terms
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Corrections to scaling [Dubail & JMS, in preparation]

@ Here, we have an exotic correction:

InL
F,. S = ¢ In L+ f(7)+ A\ % 9(7)% +other subleading terms

@ Example : symmetric Loschmidt echo

c 1

9(r) = 4 tanh (77 /L)

Problem: g(7 = it) is pure imaginary!
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Corrections to scaling [Dubail & JMS, in preparation]

@ Here, we have an exotic correction:

InL
F.S = ¢ In L+ f(1)+Ar Xg(T)% +other subleading terms

o Example : symmetric Loschmidt echo

c 1

9) = J tanh(er /)

Problem: g(7 = it) is pure imaginary!
More proper regularization 7 — € + it yields:
TE 1 InL

Flome)az = AT X 2 1 —cos(2nt/L) L2

very difficult to observe numerically.
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Detector idea (1)

Final state I ¥ ¥ i
Lo =Lg Lp Lp=Lc t
rl‘ 'IT
Initial state I == |
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Detector idea (I)

Final state I

Initial state I $

The detector

D(t) = —In|(A® B|¢Fi|C ® D ® E)|? .

Similar behavior, but starts with a plateau.
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Detector idea (1)

Final state k ¥ ¥ i
Lo =Lg Lp Lp=L¢ 1
TZ‘ ';1
Initial state k ":" i
La=1L/2 Lg=1L/2

2.8

L=1024
L=2048
2 L L=4096
CFT
0 1/4 1/2 3/4 1
(vp/L)t="7
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Detector idea (II)

D(t)} o = cAr " 3 + 2v/2 cos(nt) y InL
: 8 cos(2mt) L
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Detector idea (II)

Symmetric Detector D(¢/L) and time-dependent log L/L term

BN
~ %ﬂ T T T
o012 L =256 -
o1 | L=512
L=1024 -
0.08 - L=2048 -
L=4096 - )(/ YA
0.06 extrapolated ---% . ..
CFT — / / 3
0.04 .

®0ee oo o
o

0:02 /( .-9//,\

:
\

(D(t/L) = D(O) — [desc(t/L) — derc(0)]) %

0
-0.02 ™ r
N
-0.04

0 0.0625 0.125 0.1875 0.25
t/L
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Detector idea (II)

2v/2 In L
bl - 2 et
o 8 cos(2mt) L

Symmetric Detector D(t/L) and time-dependent log L/L term

QE&) r .
M L=256 -
= o1l L=512 .
B ’ L=1024 - /
< 008 | L=2048 - :
| L =409 { -
3 0.06 | extrapolated ---J--- A . :
= CFT —— / / :
= 0.04 - :
= ¢ Ky 3
| 0.02 - /,-/ 2]
@ ..... > 3
S e |
S-0.02 .
= \J
2 004 .
= -0
0 0.0625 0.125 0.1875 0.25

t/L
@ Slow convergence because of an extra 1/L term.
@ XX chain: results compatible with Ap =1
o Will prove A\r =1 later on.
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© Entanglement and a (bipartite) fidelity
@ Orthogonality catastrophe
@ Universal scaling functions
@ Higher dimension
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Bipartite fidelity

e (AUB|A® B)|? [Dubail & JMS, J. Stat. Mech(L) 2011]

@ Probability to observe the ground-state energy of Hayup
immediately after the quench

® Fap=—In|(AUB|A® B)|* is the LBF
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What about (AU B|[A® B) 7

Bipartite fidelity

e (AUB|A® B)|? [Dubail & JMS, J. Stat. Mech(L) 2011]

@ Probability to observe the ground-state energy of Hayup
immediately after the quench

®© Fap=—In|(AUB|A® B)|? is the LBF

; Za,B(T) Zagp(T) ZauB(T)
0| )| | @i
[T [
Bipartition A p= 0 - P 0 o p= 0 —r
Fap=2fap— fagB — fauB ; f.=—InZ_

Fap=ald™l +0O(L42) — Orthogonality catastrophe
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What about (AU B|[A® B) 7

Bipartite fidelity

e (AUB|A® B)|? [Dubail & JMS, J. Stat. Mech(L) 2011]

@ Probability to observe the ground-state energy of Hayup
immediately after the quench

®© Fap=—In|(AUB|A® B)|? is the LBF

: faB faoB fauB
(1] e Tt
L—EI IL—Z IL_E L
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What about (AU B|[A® B) 7

Bipartite fidelity

e (AUB|A® B)|? [Dubail & JMS, J. Stat. Mech(L) 2011]

@ Probability to observe the ground-state energy of Hayup
immediately after the quench

®© Fap=—In|(AUB|A® B)|? is the LBF

: faB faoB fauB
) S U T
L—EI IL—Z IL_E L

Fap(z,L)=§ [lnL 1 B [y o P In(1 — a;)] + cst

3(1—x) 3z
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Some numerical checks

F(z, L)

For comparison: entanglement entropy

S(z,L) = ¢[InL + In(sinz)] + cst




Entanglement and a (bipartite) fidelity
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Extrapolation length

CAT 1 InL
Flyreas = 51 (m ) 1) T

1
Numerics (XX chain) o
0.8 + L R
g(x) = 55 (m - 1) —_—

0.6 +
04 +
0.2 +

0 .

0 0.2 0.4 0.6 0.8 1

z=1L/L



Entanglement and a (bipartite) fidelity
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An exact result for the XX chain (cut in the middle)

A B

Fidelity given by a Cauchy-type determinant. Asymptotics can
even be computed exactly.

1InL
Fan=g L1 L+ In(est) + é% +0O(1/L)

proves Ay = 1! (Natural in a bosonization picture)

<) <r(1)>1/2
I'($)
@ can also be done for the ICTF, and one gets A\x = 1/2.

@ A7 can be changed by weakening boundary links.




Entanglement and a (bipartite) fidelity
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Higher dimension

Topological order (2d quantum)

F = S, exact for trial wave functions, which means F contains
the topological term.

@ Quantum dimer states [JMS, Misguich & Pasquier, J. Stat. Mech 2012]
@ Quantum Hall [Dubail, Read & Rezayi, arXiv 2012]

Otherwise, argument as that in [Kitaev & Preskill, Phys. Rev. Lett 2006]
applies, and gives
F =alL + Stopo

Miscellaneaous

| A

@ Area law violation for free fermions F ~ L4 1InL

@ XXZ close to criticality. In the limit 1 < £ < L, we get
F ~ gln &. [Weston, J. Stat. Mech 2012]

@ Can include boundary changing operators in the 1d case.




Entanglement and a (bipartite) fidelity
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Conclusion

@ Local quantum quenches in critical 1d systems.

@ Light-cone picture, exact results for the entanglement as well
as the Loschmidt echo.

@ Determination of the extrapolation length.

@ Introducing a (bipartite) fidelity, very similar to the
entanglement entropy.

@ Analytical and exact results.

Checks in non free-fermionic systems?
o Better understanding of the In L/L and In L/L? terms.

@ Apply this picture to other quantities: Emptiness formation
probability,. . .
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