Entanglement spectra of twodimensional solvable models

Hosho Katsura (Gakushuin Univ.,學習院大學)

Collarborators:

Anatol Kirillov (RIMS, Kyoto Univ.) Vladimir Korepin (YITP, Stony Brook) Naoki Kawashima (ISSP, Tokyo Univ.) Lou Jie (ISSP → Fudan Univ.) Shu Tanaka (Tokyo Univ.) Ryo Tamura (NIMS)

Outline

1. Introduction

- AKLT model & valence-bond-solid (VBS) state
- Schmidt decomposition & quantum entanglement

2. Entanglement spectra in 2d AKLT model

- Reflection symmetry & Gram matrix
- Entanglement entropy & spectrum
- Holographic spin chain (VBS/CFT correspondence)

3. Entanglement spectra in quantum hard-square model

- Tensor network states for interacting Rydberg atom systems
- Entanglement spectra
- Holographic minimal models (c<1)

A brief history of AKLT and valence-bond-solid (VBS) state

Haldane gap problem

Haldane's conjecture (F. D. M. Haldane, *Phys. Rev. Lett.* **50** ('83).)

S=integer antiferromagnetic (AFM) Heisenberg chains are gapped.

$$H_{\rm ex} = J \sum_{j} \vec{S}_j \cdot \vec{S}_{j+1}$$

Experiment in S=1 spin chain: $Ni(C_2H_8N_2)_2NO_2(CIO_4)$ (NENP) etc.

• Affleck-Kennedy-Lieb-Tasaki (AKLT) model (PRL 59 ('87), CMP 115 ('87).)

- 1. Exact unique ground state \rightarrow valence-bond-solid (VBS) state
- 2. Rigorous proof of the 'Haldane' gap in this model

3. AFM correlation decays exponentially with distance. \langle

$$\langle \vec{S}_0 \cdot \vec{S}_n \rangle = 4 \left(-\frac{1}{3} \right)^n$$

VBS on arbitrary graphs

- Projected pair entangled state (PEPS), Tensor network state (TNS) Verstraete, Cirac (PRA 70 (R) ('04)), Gross, Eisert (PRL 98 ('07)).
- Universal quantum computation using 2d VBS state Wei, Affleck, Raussendorf (*PRL* **106** ('11)), Miyake (*Ann. Phys.* **326** ('11)).

Very few results are known in 2d...

No (rigorous) proof of the gap,
 Entanglement entropy and spectrum?
 Kennedy-Lieb-Tasaki (J. Stat. Phys. 53 ('87))
 Square & hexagonal VBS (exponential decays of correlations)

Schmidt decomposition & quantum entanglement

Schmidt decomposition:

$$ert \Psi
angle = \sum_{lpha} \lambda_{lpha} ert \phi_{lpha}^{[A]}
angle \otimes ert \varphi_{lpha}^{[B]}
angle$$

 $\{ ert \phi_{lpha}^{[A]}
angle \}, \ \{ ert \varphi_{lpha}^{[B]}
angle \}$: orthonormal basis
 $ert \Psi
angle$ is normalized. $(\langle \Psi ert \Psi
angle = 1)$

Entanglement spectrum:

$$\lambda_{\alpha} = e^{-\xi_{\alpha}/2} \quad (\alpha = 1, 2, \ldots)$$

Reduced density matrix:

$$\rho_A = \operatorname{Tr}_B |\Psi\rangle \langle \Psi|$$
$$= \sum_{\alpha} \lambda_{\alpha}^2 |\phi_{\alpha}^{[A]}\rangle \langle \phi_{\alpha}^{[A]}|$$

Example (maximally entangled state):

$$|\Psi\rangle = \sum_{\alpha=1}^{D} \frac{1}{\sqrt{D}} |\phi_{\alpha}^{[A]}\rangle \otimes |\varphi_{\alpha}^{[B]}\rangle$$

Entanglement entropy (von Neumann entropy):

$$\mathcal{S} = -\sum_{\alpha} \lambda_{\alpha}^2 \, \ln \lambda_{\alpha}^2$$

Applications: see L. Amico *et al.*, *Rev. Mod. Phys.* **80**, 517 (2008).

 $\mathcal{S} = \ln D$

 $\mathcal{S} = 0$ when D=1 (Direct product state).

Entanglement Hamiltonian

• Reduced density matrix

$$\rho_A = \sum_{\alpha} e^{-\xi_{\alpha}} |\phi_{\alpha}^{[A]}\rangle \langle \phi_{\alpha}^{[A]}|$$

Entanglement Hamiltonian

$$\rho_A = e^{-H_{\rm E}} \quad (H_{\rm E} = -\log \rho_A)$$

Li-Haldane conjecture
H. Li & F. D. M. Haldane, *PRL* 101, 010504 (2008).
A. Chandran *et al.*, arXiv:1102.2218 (2011).

Edges of bulk FQHE states are described by CFT. The low-energy entanglement spectrum is the same CFT!

A precise correspondence between the entanglement Hamiltonian and the physical Hamiltonian with open boundaries.

- Examples of 2d topological systems
 Topological insulators: Fidkowski, PRL 104 ('10).
 Turner, Zhang & Vishwanath, PRB 82 ('10).
 Honeycomb Kitaev model: Yao & Qi, PRL 105 ('10).
 General FQH states and BCFT: Qi, H.K. & Ludwig, PRL 108 ('12).
- Other examples

Spin chain: Pollmann *et al.*, *PRB* **81** ('10). Spin ladder: Poilblanc, *PRL* **105** ('10). General argument: Peschel & Chung, *Europhys. Lett.* **91** ('11).

Outline

- 1. Introduction
- AKLT model & valence-bond-solid (VBS) state
- Schmidt decomposition & quantum entanglement

2. Entanglement spectra in 2d AKLT model

- Gram matrix & Reflection symmetry
- Entanglement entropy & spectrum
- Holographic spin chain (VBS/CFT correspondence)
- 3. Entanglement spectra in quantum hard-square model
- Tensor network states for interacting Rydberg atom systems
- Entanglement spectra
- Holographic minimal models (c<1)

Gram matrix & reflection symmetry

$$\begin{split} |\Psi\rangle = \sum_{\alpha} |\phi_{\alpha}^{[A]}\rangle \otimes |\varphi_{\alpha}^{[B]}\rangle & \frac{|\Psi\rangle}{\{|\phi_{\alpha}^{[A]}\rangle\}} \text{ and } \{|\varphi_{\alpha}^{[B]}\rangle\} \text{ may not be orthonormal.} \end{split}$$

Gram matrices:

$$(M^{[A]})_{\alpha\beta} = \langle \phi_{\alpha}^{[A]} | \phi_{\beta}^{[A]} \rangle, \quad (M^{[B]})_{\alpha\beta} = \langle \varphi_{\alpha}^{[B]} | \varphi_{\beta}^{[B]} \rangle$$

Useful fact (see Katsura *et al.*, *J. Phys. A* **43**, 255303 ('10))

If $M^{[A]} = M^{[B]} = M$ and M is real symmetric matrix, then we have $|\Psi\rangle = \sum_{\alpha} d_{\alpha} |e_{\alpha}\rangle \otimes |f_{\alpha}\rangle$ where d_{α} are the eigenvalues of M and $\langle e_{\alpha} |e_{\beta}\rangle = \langle f_{\alpha} |f_{\beta}\rangle = \delta_{\alpha\beta}.$ (Schmidt decomposition)

$$\rho_{A} = \frac{M^{2}}{\text{Tr}[M^{2}]} \quad \Longrightarrow \quad \text{Spectrum:} \quad \xi_{\alpha} = -\ln \rho_{A,\alpha} \quad \text{Entropy:} \quad \mathcal{S} = \sum_{\alpha} \xi_{\alpha} e^{-\xi_{\alpha}}$$

$$\begin{array}{c} \text{Calculation of entanglement} \\ \text{spectrum and entropy} \end{array} = \begin{array}{c} \text{Diagonalization of} \\ \text{overlap matrix (M)} \end{array}$$

This technique can be applied to VBS state on a *reflection symmetric* graph!

Application to 1d VBS states

$$|\phi_{\uparrow}^{[A]}\rangle = a_{-1}^{\dagger}|\text{VBS}^{[A]}\rangle, \ |\phi_{\downarrow}^{[A]}\rangle = b_{-1}^{\dagger}|\text{VBS}^{[A]}\rangle$$

Connected to each other by S_{tot}^{\pm} .

$$(M^{[A]})_{\alpha\beta} = (M^{[B]})_{\alpha\beta} = d\,\delta_{\alpha\beta}$$
$$\rho_{A,1} = \rho_{A,2} = \frac{1}{2}, \ \mathcal{S} = \ln 2$$

1d results: Fan, Korepin, Roychowdhury, PRL **93** ('04), H.K., Hirano, Hatsugai, PRB **76** ('07), Xu, H. K., Hirano, Korepin, J. Stat. Phys. **133** ('08).

What about 2d VBS states?

$$|\text{VBS}\rangle = \sum_{\alpha} |\phi_{\alpha}^{[A]}\rangle \otimes |\phi_{\alpha}^{[B]}\rangle$$

Symmetry is not large enough to determine the Gram matrix $M^{[A]}$. Numerics are required.

Naïve guess (valence bond EE)

$$\mathcal{S} = |A_A| \ln 2$$

Numerical results of entanglement entropy

- 1. Matrix elements can be calculated by Monte Carlo method.
- 2. Exact diagonalization of M which is $2^{|\Lambda_A|}$ -dimensional matrix.

Analytical results - Loop model approach -

Gram matrix
= holographic spin chain (polynomial in
$$(\vec{\sigma}_i \cdot \vec{\sigma}_j)$$
)

$$M = \int \left(\prod_{i \in A} \frac{(2S_i + 1)!}{4\pi} d\hat{\Omega}_i \right) \prod_{k \in \Lambda_A} \left(\frac{1 + \hat{\Omega}_k \cdot \vec{\sigma}_k}{2} \right) \prod_{(i,j) \in \mathcal{B}_A} \left(\frac{1 - \hat{\Omega}_i \cdot \hat{\Omega}_j}{2} \right)$$

Useful formula: $\int \frac{d\hat{\Omega}}{4\pi} (\hat{\Omega}_1 \cdot \hat{\Omega}) (\hat{\Omega} \cdot \hat{\Omega}_2) = \frac{1}{3} (\hat{\Omega}_1 \cdot \hat{\Omega}_2)$

Ex) Graphical rep. for $A_{ijkl} \left(\vec{\sigma}_i \cdot \vec{\sigma}_j \right) \left(\vec{\sigma}_k \cdot \vec{\sigma}_l \right)$

Bond weight: 1/3

Loop weight: 3

Non-critical loop model...

• Transfer matrix approach for strip systems Recursion relation between Lx = n and Lx = n + 1.

Perron-Frobenius vector of the transfer matrix $\rightarrow M$ in the limit of large LxWe can obtain $M(Lx \rightarrow \infty)$ without using MC method!

Comparison of 'analytical' and numerical results

Square lattice		Lx = 1	Lx = 2	Lx = 3	Lx = 4	Lx = 5
	Exact	0.6553433	0.6498531	0.6494635	0.6494368	0.6494349
Ly = 2	MC	0.6553431	0.6498533	0.6494621	0.6494342	0.6494373
Lv - 2	Exact	0.6413153	0.6325619	0.6316999	0.6316095	0.6315995
Ly = 3	MC	0.6413145	0.6325626	0.6316999	0.6316080	0.6315866

Hexagonal lattice		Lx = 1	Lx = 2	Lx = 3	Lx = 4	Lx = 5
	Exact	0.6891577	0.6890932	0.6890927	0.6890927	0.6890927
Ly = 4	MC	0.6891575	0.6890924	0.6890929	0.6890925	0.6890840
Ly = 6	Exact	0.6878024	0.6876554	0.6876523	0.6876522	0.6876522
	MC	0.6878027	0.6876558	0.6876513	0.6876537	0.6875899
Ly = 8	Exact	0.6871254	0.6869344	0.6869295	0.6869293	0.6869293
	MC	0.6871243	0.6869385	0.6869363	0.6868834	0.6867750

Entanglement spectrum

• Entanglement Hamiltonian (reminder) $-H_{\rm E}$

$$\rho_A = e^{-H_{\rm E}}$$

Momentum in *y*-direction is a good quantum number.

→ Momentum resolved spectrum!

Square (Lx=5, Ly=16)

Hexagonal (Lx=5, Ly=32)

Correspondence between 2d VBS and 1d spin chain

Entanglement Hamiltonian	physical Hamiltonian
Square lattice VBS	AFM spin chain
Hexagonal lattice VBS	FM spin chain
Mixed lattice VBS	J1-J2 spin chain

Reduced density matrix $ho_A \sim rac{1}{Z} \exp(-\beta H_{
m Heis})$

Lattice geometry is very important!

Nested entanglement entropy (square VBS)

- "entanglement" ground state (g.s.) := g.s. of H_E Maximum eigenvalue $H_E |\Psi_0\rangle = E_{gs} |\Psi_0\rangle$ $(\rho_A |\Psi_0\rangle = \rho_0^{\prime} |\Psi_0\rangle)$
- Nested reduced density matrix $\rho(\ell) := \text{Tr}_{\ell+1,...,L}[|\Psi_0\rangle\langle\Psi_0|]$
- Nested entanglement entropy (new concept)

 $\mathcal{S}(\ell, L) = -\mathrm{Tr}_{1,2,\dots,\ell}[\rho(\ell) \ln \rho(\ell)]$

CFT predictions (Calabrese-Cardy, Affleck, ...): For PBC (cylinder),

$$S^{\text{PBC}}(\ell, L) = \frac{c}{3} \ln \left[\frac{L}{\pi} \sin\left(\frac{\pi\ell}{L}\right)\right] + s_1$$

(s_1 : non-universal constant)

Central charge (square VBS, Lx=1)

Central charge=1.00747...

$L_x = 1$	$L_x = 2$	$L_x = 3$	$L_x = 4$	$L_x = 5$
1.007(4)	1.042(4)	1.055(4)	1.056(2)	1.059(2)

Low-energy effective field theory is c=1conformal field theory as in the case of the S=1/2 AFM Heisenberg chain!!

VBS/CFT correspondence

 \odot

 \odot

 \odot

Nested entanglement entropy (Lx=5, Ly=16) •

Outline

- 1. Introduction
- AKLT model & valence-bond-solid (VBS) state
- Schmidt decomposition & quantum entanglement
- 2. Entanglement spectra in 2d AKLT model
- Reflection symmetry & Gram matrix
- Entanglement entropy & spectrum
- Holographic spin chain (VBS/CFT correspondence)

3. Entanglement spectra in quantum hard-square model

- Tensor network states for interacting Rydberg atom systems
- Entanglement spectra
- Holographic minimal models (c<1)

Quantum hard-square lattice gas

Rydberg lattice gas

$$\mathcal{H}_{\text{Rydberg}} = \Omega \sum_{i \in \Lambda} \sigma_i^x + \Delta \sum_{i \in \Lambda} n_i + V \sum_{i,j \in \Lambda} \frac{n_i n_j}{|\mathbf{r}_j - \mathbf{r}_i|^{\gamma}}, \quad n_i = \frac{\sigma_i^z + 1}{2} \qquad \gamma = 6$$

Strongly interacting regime: $|V| \gg |\Omega|, |\Delta|$ Variational ansatz (Tensor network state)

S. Ji et al., PRL 107, 060406 (2011); I. Lesanovsky, PRL 108, 105301 (2012).

Parent Hamiltonian (RK construction):

$$\mathcal{H}_{\rm sol} = \sum_{i \in \Lambda} h_i^{\dagger}(z) h_i(z), \quad h_i(z) := [\sigma_i^- - \sqrt{z}(1 - n_i)] \mathcal{P}_{\langle i \rangle}$$

|z> is the zero-energy ground state.

Ground states on 2-leg ladders

• Setup

• Ground state (un-normalized)

$$|\Psi(z)\rangle = \sum_{\tau} \sum_{\sigma} [T(z)]_{\tau,\sigma} |\tau\rangle \otimes |\sigma\rangle, \quad [T(z)]_{\tau,\sigma} := \prod_{i=1}^{L} w(\sigma_i, \sigma_{i+1}, \tau_{i+1}, \tau_i)$$

Face Boltzmann weight:

$$\begin{bmatrix} d & c \\ c \\ a & b \end{bmatrix} = w(a, b, c, d)$$

$$\Box_{1} \Box_{z^{1/4}} \Box_{z^{1/4}} \Box_{z^{1/4}} \Box_{z^{1/4}} \Box_{z^{1/4}} \Box_{z^{1/2}} \Box_{z^{1/2}}$$

T

• Gram matrix

$$M = \frac{1}{\Xi(z)} [T(z)]^{\mathrm{T}} T(z)$$

Double-row transfer matrix (2d classical stat. mech.)

Classical hard-square & hard-hexagon models

Entanglement spectrum should be critical at $z=z_c$.

Entanglement spectra

• Triangular ladder

Transfer matrix → Baxter's hard-hexagon model

Exact scaling dimensions: Kluemper & Pearce, *J. Stat. Phys.* **64** ('91).

Entanglement Hamiltonian is integrable (although the original model is not).

Nested entanglement entropy

Calabrese-Cardy formula
$$s(\ell, L) = \frac{c}{3} \ln[g(\ell)] + s_1$$

Square	2d Ising		
Triangular	3-state Potts		

Summary

1. 2d AKLT model

• RDM of 2d VBS ⇔ thermal DM of 1d spin chain

Square VBS	AFM spin chain	
Hexagonal VBS	FM spin chain	
Mixed VBS	J1-J2 spin chain	

- Nested EE shows that the entanglement hamiltonian for square VBS is well described by c=1 CFT. [VBS/CFT correspondence]
- ➢ H.K., et al., JPA 43, 255303 (2010).
- J. Lou, S. Tanaka, H.K. & N. Kawashima, PRB 84, 245128 (2011).

2. Quantum hard-square model

• RDM of 2-leg ladder g.s. ⇔ transfer matrix of 2d classical stat. mech.

Square	2d Ising (c=1/2)
Triangular	3-state Potts (c=4/5)

Holographic minimal model CFTs (c<1)

- For the triangular ladder, entanglement Hamiltonian is integrable.
- S. Tanaka, R. Tamura, & H.K., arXiv:1207.6752 (to appear in PRA).