Unbounded Growth of Entanglement in Models of Many-Body Localization

Frank Pollmann

Max-Planck-Institut für komplexer Systeme, Dresden, Germany

Together with: Jens Bárðarson and Joel E. Moore

J. H. Bardason, F. Pollmann, J. M. Moore, Phys. Rev. Lett. 109, 017202 (2012)

Sep. 11 2012 Hsinchu

Unbounded Growth of Entanglement in Models of Many-Body Localization

Overview

- Introduction many-body localization
- Dynamics after a quench in disordered systems: Entanglement and other physical quantities
- Entanglement in excited states

Introduction

Many-body localization

Single particle states localized with localization length ξ States close in energy separated in space - no overlap States close in space, separated in energy

Introduction

- Model system: Anisotropic Heisenberg S=1/2 chain
- Equivalent to spinless fermions

• All single particle states localized for $\eta \neq 0$

Introduction

• Isotropic Heisenberg S=1/2 chain: Indications for a transition between localized and delocalized phase at $T=\infty$

• Properties of the localized Phase? Dynamics?

Schmidt decomposition (SVD $C = UDV^{\dagger}$)

- Decompose a state $|\psi\rangle$ into a superposition of product states:

$$|\psi\rangle = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} C_{ij} |i\rangle_A |j\rangle_B = \sum_{\gamma} \lambda_{\gamma} |\phi_{\gamma}\rangle_A |\phi_{\gamma}\rangle_B$$

- Schmidt states: $|\phi_{\gamma}\rangle$, Schmidt values: λ_{γ}
- $|\phi_{\gamma}\rangle$ are eigenstates of the reduced density matrix $ho_A = \mathrm{Tr}_B |\psi\rangle\langle\psi|$ with $ho_A |\phi_{\gamma}\rangle_A = \lambda_{\gamma}^2 |\phi_{\gamma}\rangle_A$

• "Entanglement"?

– product state (=non-entangled):

 $|\psi\rangle = \frac{1}{2} \Big(|\uparrow\rangle_A + |\downarrow\rangle_A \Big) \Big(|\uparrow\rangle_B + |\downarrow\rangle_B \Big) \implies S = 0$

- entangled state $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A |\downarrow\rangle_B + |\downarrow\rangle_A |\uparrow\rangle_B \right) \qquad \Longrightarrow S = \log 2$
- Entanglement entropy as a measure for the amount of entanglement

$$S = -\operatorname{Tr}\rho_A \log \rho_A$$
$$= -\sum \lambda_\gamma^2 \log \lambda_\gamma^2$$

• Start from an unentangled product state (S = 0)

 $|\psi_0\rangle = |\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\rangle\rangle$

• Measure the entanglement after quench and the time evolution with $U(t) = e^{-itH}$

• Clean system:

Lieb and Robinson (1972) P. Calabrese and J. Cardy (2006)

• What about the evolution in the localized systems?

- First consider the non-interacting system
- Entanglement entropy for $J_z = 0$ can be simply calculated using a mapping to chain of free fermions

$$\rho_A \sim \exp\left[\sum_{i,j\in A} h_{ij} c_i^{\dagger} c_j\right]$$

with $h = \ln [(1 - C)/C]$

• Evolution of the non-interacting system

- The effect of interactions: Properties of the manybody localized phase
- Use matrix-product state based methods:

$$|\Psi\rangle = \sum_{j_1,\dots,j_L} \underbrace{B^T A_{j_1} \dots A_{j_L} B}_{\psi_{j_1,\dots,j_L}} |j_1,\dots,j_L\rangle$$

- Very efficient if states are only slightly entangled: suitable for one-dimensional systems (complexity growth exponentially with S)
- Efficient time evolution using the **Time Evolving Block Decimation method** G.Vidal (2007)

• Trotter-Suzuki decomposition of the time evolution operator ($B^{j}_{\alpha\beta} = \Gamma^{j}_{\alpha\beta}\lambda_{\beta}$)

• Time Evolving Block Decimation algorithm [Vidal 03]

 Computationally very easy: But entanglement growth quickly with time!

• Time evolution of S in the interacting system

- Time evolution of S in the interacting system: Any nonzero interaction J_z gives rise to a **logarithmic** growth of entanglement
- Saturation follows volume law but only small fraction of phase space involved $[\approx 1/5 \text{ of the total volume}]$: No thermalization

Consistent with: Chiara et al J. Stat, Mech 2006 and Žnidarič et al PRB 2008

- Increase of particle number fluctuations much slower than entanglement
- Particle transport not ergodic, consistent with a manybody localized phase

• Getting insight from a related model

$$H = \sum_{i} J_{i} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \right)$$

- Real space RG for the dynamics $e^{-itH}|\dots\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\dots\rangle$
 - I. Short times described by rapid oscillations Ω performed by pairs of spins coupled by strongest bonds: Nothing else for $t \approx \Omega^{-1}$
 - 2. Eliminating frequencies of order Ω (effective dynamics)
 - 3. Iterate to obtain flow of the (distribution of) coupling constants

R.Vosk and E.Altmann (2012) Das gupta & Ma (1979), D. S. Fisher (1992)

 $J_L \Omega J_R$

 $\uparrow \downarrow \uparrow |$

• Getting insight from a related model

$$H = \sum_{i} J_{i} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \right)$$

- Real space RG for the dynamics $e^{-itH}|\dots\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\dots\rangle$
- Entanglement by counting decimated bonds that cut the interface

$$S(t) \sim \log(t/t_{\text{delay}})$$

 $S(t) \sim \log(t/t_{\text{delay}})^{2/\phi}$

Particle number Fluctuations

 $\operatorname{var}_n(t) \sim \log \log(\Omega_0 t)$

 $t_{\text{delay}} < t \ll t_*$

 $t_* \ll t$

• Getting insight from a related model

$$H = \sum_{i} J_{i} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \right)$$

- Real space RG for the dynamics $e^{-itH}|\dots\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\dots\rangle$
- Non thermal steady state understood as Generalized Gibbs ensemble with the asymptotic conserved quantities: $(S_1^z S_2^z)_{pair}$
- How to generalize RG Scheme to include Zeemann term?

R.Vosk and E.Altmann (2012)

Conclusions

- Logarithmic growth of the entanglement entropy in the many-body localized phase
- Other observable (particle number fluctuations etc) appear to be localized
- Now: "Finite time" scaling could give us the localization transition

- Analytic understanding of the log-growth?
- Understand the entanglement of excited states better