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Entanglement in pure quantum states

Amount of entanglement is crucial for classical
simulability (DMRG, MPS, etc.)

Quantum ground states are typically not too much
entangled: one has the “area law”

However, time evolution induced e.g. by a quench
eads to growth of entanglement

How fast does it grow with time?

Measured by von Neumann / Renyi entropies



Outline of talk

Overview of results in homogeneous chains
Introduce the defect problem

Analyze entanglement in ground state

Introduce the quench problem

Point out connections between statics and dynamics
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Entanglement in homogeneous chains
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Main object: reduced density matrix

S=—tr(plnp) S, = Intr(p")
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Scaling with subsystem size:

 ¢/6InL for critical (gapless) systems
 c/6In¢ for gapped systems
Fully understood by CFT methods

Central charge appears in prefactor!
P. Calabrese and J. Cardy, J. Phys. A: Math. Theor. 42, 504005 (2009)



Free fermion/boson systems

« RDM can be written in a simple form: p=—¢e "t

* 'H is again a free-particle Hamiltonian
Can be obtained through 2-point correlations

(reduced correlation matrix)

Eigenvalues ¢ contain all the information about
entanglement, e.qg. for fermions

()= ——

e2wi(t) 11
« Simple formulas for entropies, e.g von Neumann:
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S =4 Zln(l + e_zw”‘) + Z 20 :k|: 1

|. Peschel and V. Eisler J. Phys. A: Math. Theor. 42, 504003 (2009)



Chains with defects

Defect breaks conformal invariance locally
Marginal perturbation in non-interacting case
How does the spectrum & entropies change?
Numerics shows: S ~c_/6In L

Models considered:

* Transverse Ising chain
e XX chain
 Coupled oscillators



Representation of RDM

o

|

o Simpler geometry through conformal mapping

* Result: finite strip geometry
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* To calculate: transfer matrix of strip with defect lines



Transfer matrices

Tl chain

N

« 2D Ising model with ladder defect

« Defect parameter has to be

renormalized
,_ thKp
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Oscillator chain
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« Gaussian model on square lattice
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Dispersions

Fermions Bosons
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 Parameter s corresponds to the transmission amplitude of the defect!

. Spacing of € is ~1/InL (. Peschel, JSTAT P06004 (2004))



Entropies

S, =«k,InL
Fermions Bosons
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All the prefactors are available analytically!

]
Krp(s) = _F{[(l +s5)In(l +5)4+ (1 —s)In(l —s)]Ins

| | k(s) = 35 — kp(s)
+[(1 +s)Lix(=s5) 4+ (1 — s)Lix (s)]}



Time evolution after local quench

What happens if we connect the chains through a
defect? (Ising, XX)

In homogeneous case CFT result shows:
S~c/l3Int Calabrese & Cardy JSTAT P01023 (2008)
Central charge appears also in time evolution!
Numerical results show for quench through defect:
S~¢C /3Int

Is there any connection between static and dynamic
effective central charges?



Conformal defect
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Solved by a simple rescaling of the homogeneous eigenvectors:
Oék(rbk( ) 1 = 7

Calculate time dependent reduced correlation matrix (cl, ()¢, (1))
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Start with equal fillings

e |nitial correlation matrix: _ coO 0
CO=1 ¢ o

o After time evolution one has the relation
2C' (1) — 1) =X 22C({t) —1)2 + (1 = 2X)bmm

mmn mn

which can be rewritten using s = A

1
chw(t) = —che(t)
S

and leads to

éeff — Ceff



Spectra and finite size effects
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Homogeneous spectrum is not known analytically

Entropy formula (t<<L) analogous to equilibrium result for the
segment in an infinite chain if one substitutes t with 7

For finite L one has an analogy with a block in a ring (PBC!)

c 2L . mupt
S(t)—§h1 —sin— -

J.-M. Stéphan and J. Dubail, JSTAT P08019 (2011)

-+ const C — Cofp



Biased case

* Initial correlation matrix: ) (

o After time evolution:
C’;{nn(t) — )\QCm.n(t) + (1 — )\2)6?1171

which can be rewritten as ¢/ (t) = A\ (t) +1 — \?
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Quasi-classical picture

Incoming particles partially transmitted / reflected
Steady flow of particles and backscattering
Entanglement is created steadily at the defect

Entropy growth will be linear: S(t) = at + gInt +~
T

Ansatz for slope: « =/ 2—qvq H(Tq)
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Agrees perfectly with numerics:
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Conclusions

Statical defect problem solved exactly, entropy growth
IS logarithmic in block size

Quench can be solved exactly for conformal defect,
entropy grows logarithmically in time for equal fillings

Biased case leads to a linear entropy growth!
Entropy is generated locally but steadily
Quasi-classical description a la

Calabrese & Cardy / Rieger & Igloi
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