Quench dynamics of Interacting bosons in 1-dimension
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Quenching and Time Evolution

- Prepare an isolated quantum many-body system in a state|®,), typically eigenstate of Ff,,
- At t = 0 turn on interaction f,, and evolve system with 7 = H, + H; :

Do, t) = e Do)
- Many experiments: cold atom systems, nano-devices, molecular electronics, photonics

- New technologies, old questions

Questions: (as an introduction) z>

* Time evolution of observables (O(t)) = (g, t|O| P, 1))
e Evolution of correlation functions in quenched systems (®olA(t +7)B(1)|20) = (Do, 1)[A(7) B[P0, )

- Dynamics of evolution of the Kondo resonance in a quantum dot: Anderson model

Quench att=0: couple dot to leads

i i - '”rJ energy

DOS

Measure time evolution of
the Kondo peak.

- Time resolved photo emission
spectroscopy

- Time dependent current



Closed systems: quenching — long time limit, thermalization

* Manifestation of interactions in time evolution dynamics

The subject of this talk: bosons in 1-d

Time evolution and statistical mechanics:

 Long time limit and thermalization:

-isthere alimit O = lim (O(1))? t

- is there a density operator # such that O = tr(pO)?
Does it depend on  F, = (vy| H |+/y) noton |w0>

W)

W) € A« Eg — AE < Ey < Ey + AE

» Scenarios of thermalization (Rigol et al)

- Diagonal matrix elements of physical operators A, do not fluctuate much around constant
energy surface (ETH-eigenstate thermalization hypothesis, Deutsch 92, Srednicki 94)

- Occupation numbers |, |? do not fluctuate on the energy surface for reasonable IC

- Both fluctuate but are uncorrelated

* Thermalization, Integrability, Non-Boltzmannian ensembles, Rigol, Cardy, Cazalilla, Kollath

If conservation laws are present — how do they affect dynamics of thermalization?



Open systems: quenching and non-thermalization, transport

Nonequilibrium currents Goldhaber-Gordon et al, Conenwett et al, Schmid et al
* Two baths or more y
time evolution in a nonequilibrium set up £

— Quench

— or

— Keldysh
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e (<0, leads decoupled, system described by: p,

Nw
I
W

e (=0, couple leads to impurity

Interplay - strong correlations and e (>0, evolvewith H(t) = Hy+ H;
nonequilibrium

* What is the time evolution of the current (7(¢))?
* Asymptotic limit?
* Under what conditions is there a steady state? Dissipation?

* Steady state — Is there a non thermal ps?

* New effects out of equilibrium? New scales? Phase transitions, universality?



Quenching in 1-d systems

Physical Motivation:
* Natural dimensionality of many systems:
- wires, waveguides, optical traps, edges
* Impurities: Dynamics dominated by s-waves, reduces to 1D system

* Many experimental realizations: Cold atom traps, nano-systems..

Special features of 1- d : theoretical
» Strong quantum fluctuations for any coupling strength
* Powerful mathematical methods:
- RG methods, Bosonization, CFT methods, Bethe Ansatz approach

- Bethe Ansatz approach: allows complete diagonalization of H

- Experimentally realizable: Hubbard model, Kondo model, Anderson model,
Lieb-Linniger model, Sine-Gordon model, Heisenberg model, Richardson model..

- BA —— Quench dynamics of many body systems? Exact!

Others approaches: Keldysh, t-DMRG, t-NRG, t-RG
Much work in context of Luttinger Liquid: Cazalilla et al, Mitra et al



Time Evolution and the Bethe Ansatz

* A given state |@,) can be formally time evolved in terms of
a complete set of energy eigenstates |F*)

[@o) = 225 [F)(EA Qo) —— [Qo, 1) = e Do) = 30, e N [FN)(F Do)

If 7 Integrable — eigenstates |7*) are known via the Bethe-Ansatz

» Use the Bethe Ansatz to study quenching and evolution

* New technology Is necessary:

- Standard approach: impose PBC —> Bethe Ansatzeqns —  spectrum —>  thermodynamics

- Non equilibrium entails more difficulties:

I. Compute overlaps Il. Sum over complete basis 1. Take limits

Some progress was made - J. S. Caux et al



The Bethe Ansatz - Review

_ Example'
* General N - particle state
N H=— Z{)“ e 6 Z ]
A A7 - e
Py = [ e P@) [] o} @) o)
le i /\j—/\?+if'
Sij(Ai = Aj) = - }‘j i

* Wave function very complicated in general

* The BA -wave function much simpler -
Product of single particles wave functions f)(x) and S-matrices Sij»

I. divide configuration space into N! regions (), {zq1 <, < zon}
Il particles interact only when they cross: inside a region product of single particle wave funct.

iii. assign amplitude A< to region @

iv. amplitudes related by S-matrices S;; (e.g. A132 = §23 A123)

— | FA\7) = > 0esn AQ Hj ro,; (@)

v. do it consistently: Yang-Baxter relation

Sl 813823 DN SlZ




The contour representation

Instead of |®g) = >, [F)(F*|®y) introduce (directly in infinite volume):

Contour representation of [®o)

V. Yudson, sov. phys. JETP (1985)
o N A A
‘q)0> — / d A |F >(F |(I)0> Computed S-matrix of Dicke model
Y

with: |F?) Bethe eigenstate

|[**) obtained from Bethe eigenstate by setting S — ] - easier to calculate

7 contour in momentum space { A } chosen according to pole structure of S(\;, — \,)

Note: in the infinite volume limit momenta{ )} are not quantized
- no Bethe Ansatz equations, { \ } free parameters

then:

‘@mt) _ / dN)\ 6_.7;E(/\)tlF)\>(F/\‘(I)O>

B




Boson Systems - experiments

Bosons in optical traps
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Trapped condensats —

Superfluid Mott insulator transition Maott insulator — inifial condifion
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Imaging of density cloud using a CCD ; : : )
Density and noise comelation functions

Bloch et al (Nature 2005, Rev Mod Phys 2008)



Interacting bosonic system

Bosons in a 1-d with short range interactions

- coupling constant
H = /d"LbT( )dzb( )+ /dl’bl( )b(i)bl( )b(z) Z>0 pregulsive
c < (0 attractive
Equivalently'
H = — Z@z +(Z(5

1<J

e Initial condition | : bosons in a /\/\/\/\J\

periOdiC Optical Iattice Quench: Turn an inter, ct:onandre!easetrap

« Initial condition Il : bosons in a
trap - condensate




Bosonic system — BA solution

The N-boson eigenstatestate (Lieb-Linniger ‘67)

AL, AN) = /HZ%(/\& —X;) [ [ e b (y;)(0)
Yy

i<j J
Eigenstates

labeled by " i. - satisfy BAegns if PBC imposed,
Momenta

A, Ay <

n-string

- unconstrained in open space ..

li. real, - for ¢ >0 .
_ j=0,---,n—1
. complex “strings” - for ¢ <0
The 2-particle S-matrix Dynamic factor:
Ai — Aj Fic , Ai — Aj —icsgn(y; — ;)
S?-- )\,)-—)\; — J _— Yix: — \.) = = J : g JJ
3 (Ai = Aj) N —ic Z% (N — ) h—ic

The energy eigenvalues

H‘/\la"'?)\N>:Zj)\§ (AL, AN)



bosonic system: contour representation

“Central theorem” denote: 0(7) = 0(zy > 29 > - .2N)

Do) / Bo(Z)bT (xn) - - b1 (21)|0) =
. . Ni — Aj —icsgn(y; —y;) N (s
— 9 / (I) e J : ‘ JJ /?’/\.'} (y? 'L.'})b-l- y ()
G | e e e e 1 € )10

i< j
A
.

As )

Az

A i contour accounts for

strings, bound states

Repulsive ¢ >0 Attractive ¢ <0,

It time evolves to:

q’(),f>_///
xJyJA

. . Ai — A; —1c sgn(y; — y; N2 i (s 4
9(.,13)(1)()(1,) H })\ — )\g_(ZC y?) He ,)\Jte.)\J(JJ J)bi(yj)‘0>
) J P

1< i

- Expression contains full information about the dynamics of the system




Keldysh

» Time evolution of expectation values:

Oq;o (Zf) — <(I)()’€?:Ht O 6_?;Ht‘(1)0> — <(I)(), ﬂ O ’@0, Zf>
Non-perturbative Keldysh:

= [DV*Db O i o [S0(0.b7) 451 (b,b")] dt

carried out on the Keldysh contour ¢, with separate fields for the top and
bottom lines:

D) t =0

>t =1

Do) t =0




What to calculate?

e We shall study:

1. Evolution of the density

Ci(x,t) = (p(xz,t)) Time Of Flight experiment

competition between quantum broadening and attraction

2. Evolution of noise correlation

(x1,t)p(xa,t
02(331;33230 — (E)[(:Eglt);lzﬂ()(-ﬁzai% —1

time dependent Hanbury-Brown Twiss effect
- repulsive bosons evolve into fermions

e attractive bosons evolve to a condensate

Hanburny-Brown Twiss effect
Measure: C5(xz1,x9,1)
- two sources: originally stars
Free bosons Co(x,—x) ~ cosx
Free Fermions Ca(x, —x) ~ —cosx

- two free particles:
Similar, but time dependent

- many free particles:
More structure: main peaks, sub peaks

Effects of interactions?



Evolution of a bosonic system: density

Density evolution:

Time of flight experiment (p(z0,t)) = (Po(t)[b (0)b(0)|Po(t))
( ght exp )
Two bosons p
n ] repulsive
- ' non-interacting
Initial —_— attractive
condition |
- | e |
|Pg) = ! = -;'|'(;;:l){)'i‘(;{;g);()) Attractive: Time period of oscillations 7" = f—’
wo?) - independent of IC

(y1 — £1) L (yo — $2}

Rep: | (t))2 = [, ——"—gm— (1—C\/wété'(yz—m)ﬁéag(”eff(%”?))

C(yi—z)? | (yg—m9)?

At | Do (L))2 = fg B 47;{ - (1 — eV mith(y2 — y1)e wr e (Derfe (i_

with a(t) = 2¢t —i(y1 — x1) — i(y2 — x2)
Repulsive: almost coincides with free boson Broadening

Attractive: competition between attraction and Broadening



Emergence of an asymptotic Hamiltonian

Long time asymptotics - repulsive:

® Bosons turn into fermions as time evolves (for any ¢ > 0) (cf. Buljanetal.’08
[ AN — A —icsgn(y; — vy; Y )
‘(I)O- f> — / / / 9('1{7)(1)0(3—:») 11 1 }/\ ?()\9‘,5]?? ((’yi?. y}) H e—aZ_? )\j!’_AJ(yJ _-I-';,r) j[h b' (y})‘o>
JuJy. A\ <‘J 1 j = 1C J J
_ / / / () Do (3) i — \j —icy/t .sg-rz-(y-g — ;) e_..gz_.f-A_‘f—)\_.j(y_.;_:;:_?.)/\/i‘*[ lﬁ(:yj)\0>
Y v_“,h- >\ — /\; - 'LC'\ﬂ -J .

<J
— /// (&) @o(T)e™ =N~ W2 /VETT sgn(y; — y;) [ [ 07 (y5)10)
Yy 1<J J
_ —iH]t / Az 0(2)Po(Z H i)]0).
o J

where

H] =~ [ ct(2)9c(c
- In the long time limit repulsive bosons for any ¢ > () propagate under the
influence of a Tonks — Girardeau Hamiltonian (hard core bosons=free fermions)
- The state equilibrates, does not thermalize
- valid independently of @

A, antisymmetrizer

® Scaling argument fails for attractive bosons (instead, they condense to a bound state)



Evolution of a bosonic system: saddle point app

Corrections to long time asymptotics -
Stationary phase approx at large times (carry out A - integration)

= Repulsive — only stationary phase contributions (on real line);  (cf. Lamacraft 2011)

o (€

= Attractive — contributions from stationary phases and poles.
For two particles:

g t) H & — & —ic sgn(.f?: —&5) 3, i€t
2t 4n it) 2  — & —ic

3<;

Pole contributions from deformation of contours — formation of bound states

.. 1 & — & —icsgn(§n — &2) 3 ie2t—ig;a; . .
{ LT t S : ' > j > ~1 ] >
b&, T, 5[4731 §1— & —ic “ i ?
269(62 B 51)e?ﬁéft—iél:r:l—i(gl —'i-(_:)Qf,—{—*i(El—?](_:_)(2!,62—:1_:2)]
Vamit

- repulsive correlations depend on& = % only (light cone propagation)
- attractive correlations maintain ¢ dependence (bound states provide additional scales)



Evolution of a bosonic system

Long time asymptotics:

* General expression — repulsive

|, t // (Z) P () Hf? & — Lf;J_nis H ¢ =it (4.)]0)

1< J

Exp: Bloch et al

function of ¢ = /2t only, light-like propagation Nature 2012

» General expression — attractive (poles and bound states)

T ;
|Dg, t) = // T) Do (7) Z Hg' éjg? K;gjf o H\/élm (e bT(J )10

£ =E;,8F +ici<ji<j

Pole contributions follow X Pattern corresponds to successive
recursive pattern: LN formation and contributions of
bound states




Evolution of repulsive bosons into fermions: HBT
Long time asymptotics - repulsive:
® Bosons turn into fermions as time evolves (for any ¢ > 0)

® Can be observed in the noise correlations: (dependence on ¢ only via & = x/2t)

Calar,22.1) = Calt ) = (HEHEE; — 1

Fermionic correlations evolve

® Fermionic dip develops for any repulsive interaction on time scale set by 1/¢*



Evolution of a bosonic system: noise correlations

3 particles

5 particles -

Noise correlations — many particles

Repulsive bosons

02(57 —5)

|

M

10 particles |

|

Fermionicdipas & — 0
Structure emerges at éa = o

Attractive bosons

2 particles 02(§7 _5)/75

Violet  -longer

/ Blue -short times
Magenta -longest

La

central peaks increase with time
- weight in the bound states increases

C2(§, -8/t
3 particles
Blue  -short times
Violet -longer
Magenta -longest

peaks diffuse — momenta redistribute



Evolution of a bosonic system: noise correlation

Noise correlations — starting from a condensate

Repulsive bosons Attractive bosons

Two (blue) and three bosons, Three bosons, at times: tc? = 20, 40, 60



Time evolution “Renormalization Group™

“Dynamic” RG interpretation

» Universality out of equilibrium

« Can view time evolution as RG flow ¢ ~ In(Dy/D)

- As time evolves the weight of eigenstate contributions varies, time successively “integrates out”
high energy states

c=0 ¢
(Condensed bosons) —o0 < c<0 ® >0 » 00 (Free fermions)

 Are there “basins of attraction” for perturbations flowing to dynamic fixed points

c<0 ¢c=0 ¢>0
(Condensed bosons) —oo0 < < ® > » 00 (Free fermions)

mﬁonmﬂubbam?

* Other fixed points?



Evolution of a bosonic system

Conclusions:

* Does not need the spectrum of Hamiltonian or normalized eigenstates
* Takes into account existence of bound states without dealing with large sums over strings
* Asymptotics calculable for both repulsive and attractive interactions in the Lieb-Liniger model

To do list:

» Generalize to other integrable models: Heisenberg model (in progress, with Deepak lyer),
Anderson model (Deepak lyer, Paata Kakashvili), Lieb-Linniger + impurity ( Huijie Guan)
* Time evolution at finite volume, finite density (in progress, with Deepak lyer)

* Time evolution at finite temperatures (under discussion)

* Study approach to nonequilibrium steady state (in progress, with P. Kakashvili)

e Numerical tests of dynamic RG hypothesis (in progress, with P. Schmitteckert, t-DMRG)

» Generalize to correlation functions (open)

Big Questions:

* What drives thermalization of pure states? Canonical typicality, entanglement entropy
(Lebowitz, Tasaki, Short...)

* General principles, variational? F-D theorem out-of-equilibrium? Heating? Entanglement?

e \What is universal? RG Classification?






