
Quenching dynamics across quantum critical
points: unusual power laws

Diptiman Sen

Indian Institute of Science, Bangalore, India

Email: diptiman@cts.iisc.ernet.in

Dziarmaga, Advances in Physics 59 (2010) 1063
Polkovnikov, Sengupta, Silva and Vengalattore, Rev. Mod. Phys. 83 (2011) 863

Dutta, Divakaran, Sen, Chakrabarti, Rosenbaum and Aeppli, arXiv:1012.0653



Outline

• Quantum critical point and critical exponents

• Slow quench across a quantum critical point and
Kibble-Zurek scaling of defect density

• Slow quench along a quantum critical line and
non-linear quenching

• Effect of spatial periodicity: variable critical exponent ν

• Slow quenching in a Tomonaga-Luttinger liquid



Quantum critical point (QCP)

The ground state of a quantum system may undergo a continuous
phase transition as some parameter γ in the Hamiltonian is varied

Example: one-dimensional Ising model in a transverse magnetic field

H = −
∑

n

[ σz
nσ

z
n+1 + γ σx

n ], where σa
n are Pauli matrices

There is a QCP at γc = 1

The two-spin correlation function 〈σz
0σ

z
n〉 − 〈σz

0〉2 goes to zero
exponentially with n with a correlation length ξ which diverges
near the QCP as | γ − γc |−ν



QCP · · ·

Consider the low-lying excitation spectrum ω(k). At the QCP
γ = γc , ω(k) vanishes at some momentum kc as | k − kc |z

Near the QCP, the gap ∆E = ω(kc) between the ground state
and the first excited state vanishes as ∆E ∼ | γ − γc |zν

These relations define two critical exponents ν and z

For the transverse Ising model,

ω(k) = 2
√

(γ − 1)2 + 4γ cos2(k/2)

so that γc = 1 and kc = π

ω goes to zero linearly as |γ − γc | for k = kc

and as |k − kc | for γ = γc

So the critical exponents are z = ν = 1



Transverse Ising model

H = −
∑

n

[ σz
nσ

z
n+1 + γ σx

n ]

For γ → ∞, the ground state is

The lowest excited state has a spin pointing in the wrong direction

For γ → 0, the ground states are

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

and

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The lowest excited state is a domain wall

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓



Quenching in transverse Ising model

What happens if we change γ from ∞ to 0 in a time τ ?

For γ → 0, the ground states are

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

and

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

But due to quenching at a finite rate, the state reached as
γ → 0 will have some defects

↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓



Defect scaling law

How does the defect density depend on the quenching time τ ?

Consider a linear quench with γ = −t/τ, where −∞ < t < 0

Main result: For the transverse Ising model, if τ is much larger
than the inverse of the band width of the low-energy excitations,
then the density of defects n scales as 1/

√
τ

Reason: On quenching across a QCP, there are necessarily
a number of low-energy modes for which the quenching is not
adiabatic. These modes give rise to defects

Zurek, Dorner and Zoller, Phys. Rev. Lett. 95 (2005) 105701
Polkovnikov and Gritsev, Nature Physics 4 (2008) 477



Jordan-Wigner transformation

The model can be solved exactly by mapping spin-1/2’s to
fermions using the Jordan-Wigner transformation

Lieb, Schultz and Mattis, Ann. Phys. 16 (1961) 407

an =

[

n−1
∏

m=−∞

σz
m

]

σ+
n

a†
n =

[

n−1
∏

m=−∞

σz
m

]

σ−
n

where σ±
n = (1/2) (σx

n ± iσy
n )

Then {am, an} = 0 and {am, a
†
n} = δmn

These operators create and annihilate spinless fermions



Hamiltonian

In terms of the fermion operators, the Hamiltonian

H = −
∑

n

[ σx
nσ

x
n+1 + γ σz

n ]

becomes

H = −
∑

n

[ (a†
n − an) (a†

n+1 + an+1) + 2γa†
nan ]

Define

ak =
1√
N

∑

n

an e−ikn and an =
1√
N

∑

−π<k<π

ak eikn

where N is the number of sites. Then we get

H = 2
∑

0<k<π

[−(γ + cos k) (a†
k ak + a†

−k a−k ) − i sin k (ak a−k − a†
−k a†

k )]



Energy spectrum

H = 2
∑

0<k<π

[−(γ + cos k) (a†
k ak + a†

−k a−k ) − i sin k (ak a−k − a†
−k a†

k )]

This is a system of non-interacting fermions.
For each pair of momenta ± k , there are four states:
| φ > (empty state), | k >, | − k > (one-particle states),
and | k , − k > (two-particle state)

The states | φ〉 and | k , − k〉 are governed by the Hamiltonian

hk =

(

−4(γ + cos k) i 2 sin k
−i 2 sin k 0

)

The ground state lies in this two-dimensional subspace, and the
energy spectrum is ω(k) = 2

√

(γ − 1)2 + 4γ cos2(k/2)

As γ varies with time, only these two states mix with each other



Quenching of γ

We only have to deal with a two-level system for
each value of ± k

Damski, Phys. Rev. Lett. 95 (2005) 035701

For γ = −t/τ, the Hamiltonian is

hk =

(

2(t/τ − cos k) i 2 sin k
−i 2 sin k −2(t/τ − cos k)

)

If we start in the ground state of this system at t = −∞,
which state do we reach at t = 0 ?

This is the Landau-Zener problem

Zener, Proc. R. Soc. London Ser A 137 (1932) 696
Landau and Lifshitz, Quantum Mechanics: Non-relativistic Theory
(Pergamon, Oxford, 1965)



Landau-Zener problem

Consider a two-level system with a time-dependent Hamiltonian

H =

(

t/τ b
b −t/τ

)
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If we start in the ground state at t → −∞, the probability of ending
in the excited state at t → ∞ is given by p = exp [− πb2τ ]



Scaling argument for p

The probability of ending in the excited state is p = exp [ − πb2τ ]

Note that p → 0 or 1 as τ → ∞ (adiabatic) or 0 (sudden quench)

A simple scaling argument shows that p must be a function of b
√
τ .

The Schrödinger equation is

i
∂

∂t

(

ψ1

ψ2

)

=

(

t/τ b
b −t/τ

) (

ψ1

ψ2

)

Multiply throughout by
√
τ and re-defining t ′ = t/

√
τ to get

i
∂

∂t ′

(

ψ1

ψ2

)

=

(

t ′ b
√
τ

b
√
τ −t ′

) (

ψ1

ψ2

)

Hence, if we start with ψ1(t ′ = −∞) = 1, then p = |ψ1(t ′ = ∞)|2
must be a function of the single parameter b

√
τ , and the function

must → 0 or 1 as b
√
τ → ∞ or 0



Defect scaling law

Returning to the Hamiltonian for the transverse Ising model

H = 2
∑

0<k<π

[−(γ + cos k) (a†
k ak + a†

−k a−k ) + sin k (ak a−k + a†
−k a†

k )]

the total defect density is

n =

∫ π

0

dk
2π

pk =

∫ π

0

dk
2π

exp [ − 2πτ sin2 k ]

For large τ, the integral is dominated by contributions from
k = 0 and π. Hence n ∼

∫ ∞

0 dk exp [ − 2πτk2 ] ∼ 1/
√
τ

The power law arises because the quench takes the system across
a QCP where the energy vanishes at some values of k . No matter
how slowly we quench across this point, there are modes with
energies . 1/

√
τ for which the quenching is not adiabatic



Kibble-Zurek scaling at a QCP

General result: For a translation invariant system, if γ is taken
across a QCP at a rate 1/τ, the density of defects scales as

n ∼ 1
τdν/(zν+1)

Polkovnikov, Phys. Rev. B 72 (2005) 161201(R)

A ‘hand waving’ argument: the defects are produced by a region in
momentum space with volume kd , at a time t ∼ (γ − γc)τ ∼ 1/ω,
where k ∼ (γ − γc)

ν and ω ∼ kz . Then the density of defects is
n ∼ kd ∼ 1/τdν/(zν+1)

For d ≥ 2(z + 1/ν), we get n ∼ 1/τ2 due to contributions
from all momenta, not just the critical momenta



Generalizations of Kibble-Zurek scaling

The Kibble-Zurek scaling relation is

n ∼ 1
τdν/(zν+1)

We now discuss some generalizations of this relation:

(i) quenching across a gapless surface in momentum space

(ii) quenching along a critical line in parameter space

(iii) non-linear quenching

Each of these modifies the power law



Gapless surface in momentum space

Suppose that at γ = γc , the energy vanishes on a surface of d − m
dimensions in momentum space, rather than at a single point

Then the momentum integration appearing in the expression for the
defect density will be over m dimensions instead of d dimensions

Hence, we will get

n ∼
∫ ∞

0
dmk pk (kτν/(zν+1)) ∼ 1

τmν/(zν+1)

This happens in the Kitaev model which has d = 2, m = 1, and
ν = z = 1. Thus n ∼ 1/

√
τ instead of 1/τ as it normally would

have been for a two-dimensional model with ν = z = 1



Kitaev model

Kitaev, Ann. Phys. 321 (2006) 2

Spin-1/2 model on a honeycomb lattice, with the Hamiltonian

H =
∑

j+l=even

(J1 σ
x
j,lσ

x
j+1,l + J2 σ

y
j−1,lσ

y
j,l + J3 σ

z
j,lσ

z
j,l+1)

Can assume that all couplings Ji ≥ 0

x y
z

a

b

The model can be solved exactly by mapping it to Majorana
fermions by a Jordan-Wigner transformation



Phase diagram of Kitaev model

If J1 < J2 + J3, J2 < J3 + J1 and J3 < J1 + J2, the system
is gapless along some lines in the Brillouin zone

For all other values of (J1, J2, J3), the system is gapped

The phase diagram can be shown in terms of points in an
equilateral triangle satisfying J1 + J2 + J3 = 1
(the value of Ji is the distance from the opposite side)

GAPLESS

GAPPEDGAPPED

GAPPED

J1J2

J3



Quenching in the Kitaev model

We hold J1, J2 fixed, and vary J3 in time as Jt/τ, from
t = −∞ to t = ∞ (as shown by the red dotted line). Then
the system will pass through the gapless region for some time

GAPLESS

J1J2

J3

Sengupta, Sen and Mondal, Phys. Rev. Lett. 100 (2008) 077204
Mondal, Sen and Sengupta, Phys. Rev. B 78 (2008) 045101



Scaling of defect density

In the gapless region, the energy of the low-lying excitations vanishes
on some lines in the Brillouin zone as indicated in red below

kx

ky

Thus the Kitaev model has d = 2 but m = 1. Also, ν = z = 1

Hence the defect density scales as n ∼ 1/
√
τ instead of 1/τ

n =
3
√

3
4π2

∫ ∫

d2~k p~k ,

p~k = e−2πτ [J1 sin(~k ·~M1)−J2 sin(~k ·~M2)]
2/J



Quenching along a critical line

A different scaling occurs if one quenches along a critical line in
parameter space. In terms of a two-level system, suppose that
the Hamiltonian for the modes with momenta ± k is

H =

(

|k |a t/τ |k |z
|k |z −|k |a t/τ

)

A scaling argument then shows that the defect density goes as
n ∼ 1/τd/(2z−a) for a system in d dimensions

Example: the spin-1/2 XY chain with a transverse magnetic field

H = −
∑

n

[σx
nσ

x
n+1 + σy

nσ
y
n+1 + γ(σx

nσ
x
n+1 − σy

nσ
y
n+1) + hσz

n ]

Mukherjee et al., Phys. Rev. B 76 (2007) 174303
Divakaran, Dutta and Sen, Phys. Rev. B 78 (2008) 144301



Quenching along a critical line · · ·

H = −
∑

n

[σx
nσ

x
n+1 + σy

nσ
y
n+1 + γ(σx

nσ
x
n+1 − σy

nσ
y
n+1) + hσz

n ]

γ

h
-1 1

The critical lines are h = −1, h = 1 and − 1 ≤ h ≤ 1, γ = 0

If we quench along the red line h = 1, we get d = 1, z = 2, a = 1

Hence the defect density scales as n ∼ 1/τd/(2z−a) ∼ 1/τ1/3



Different quenching possibilities
γ

h
-1 1

Quenching along one of the vertical lines h = ±1 gives n ∼ 1/τ1/3

The quenching procedure discussed earlier was to keep γ fixed
at a non-zero value and cross one of the lines h = ±1.
This gives n ∼ 1/τ1/2

Finally, quenching through one of the multicritical points at
h = ±1, γ = 0 gives d = 1, z = 3, a = 0. Hence
n ∼ 1/τd/(2z−a) ∼ 1/τ1/6



Non-linear quenching

We can change the quenching parameter γ through a QCP in a
non-linear way. A ‘hand waving’ way of studying this is to take

H =

(

∆E sign(t) |k |z
|k |z −∆E sign(t)

)

where ∆E ∼ |γ − γc |zν and we set |γ − γc | = |t/τ |α

Then a scaling argument will show, for a system in d dimensions,
that the defect density goes as n ∼ 1/τdνα/(zνα+1)

This is like the power law for linear quenching but with ν → να

For d = ν = z = 1, we obtain n ∼ 1/τα/(α+1)

Sen, Sengupta and Mondal, Phys. Rev. Lett. 101 (2008) 016806
Mondal, Sengupta and Sen, Phys. Rev. B 79 (2009) 045128



Variation of power law with periodicity

For quenching across a QCP, the power law for the defect density
can depend on the periodicity of the term whose coefficient is varied
in time. Consider a tight-binding model in one dimension in which
the chemical potential is periodic in space

H = −2
∞
∑

n=−∞

[ c†
ncn+1 + c†

n+1cn + h(t) cos(
πn
q

+ φ) c†
ncn ],

h(t) =
t
τ

where q = 1, 2, 3, · · · . The chemical potential has period 2q

The ground state at t = −∞ is half-filled, and the Fermi momenta
lie at k = ±π/2. Only states near these momenta contribute to the
defect density. So we find the effective Hamiltonian governing pairs
of states at − π/2 + k and π/2 + k , where |k | ≪ π/2

Sen and Vishveshwara, EPL 91 (2010) 66009
Thakurathi et al., Phys. Rev. B 85 (2012) 165425



Effective Hamiltonian

H = −
π

∑

k=−π

4 cos k c†
k ck −

∞
∑

n=−∞

2h cos(
πn
q

+ φ) c†
ncn

The low-energy states near ± π/2 differ by a momentum of π.
They are connected by matrix elements coming from the
cos(πn/q + φ) term. Since this has Fourier components at
±π/q, we have to go to the q-th order in perturbation theory;
this involves going through q − 1 intermediate states along
one of two possible paths, shown by red and green for q = 2

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

k

E k



Effective Hamiltonian · · ·

The matrix element between the states near ± π/2 is given by

|∆| =
hq

4q−1

2| cos(qφ)|
∏q−1

s=1 sin(πs/q)
if q is odd

=
hq

4q−1

2| sin(qφ)|
∏q−1

s=1 sin(πs/q)
if q is even

for small h. The cos(qφ) or sin(qφ) comes from the
relative phase between the two possible paths

The effective Hamiltonian for the states ± π/2 + k is

Hk =

(

−4k ∆
∆∗ 4k

)

for |k | ≪ π/2. Since ∆ ∼ hq , the QCP at h = 0 has ν = q
and z = 1. So we expect the excitation probability pk to be a
function of kτq/(q+1) and the defect density to scale as 1/τq/(q+1)



Defect density for q = 2 and φ = π/4
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Log - log plot of defect density versus τ

A linear fit gives P ∼ 1/τ0.67 which is close to a − 2/3 power law

Sen and Vishveshwara, EPL 91 (2010) 66009



pk for q = 3 and φ = 0
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Thakurathi et al., Phys. Rev. B 85 (2012) 165425



Effect of interactions

Consider a nearest-neighbor interaction between particles

V =

∞
∑

n=−∞

V0 c†
ncn c†

n+1cn+1

This gives a Tomonaga-Luttinger liquid which is characterized by
a Luttinger parameter K and a velocity v . K = 1 for V0 = 0
and < 1 for V0 > 0 (repulsive interactions)

In terms of a bosonic field φ, the action is of the sine-Gordon form

S =
1
2

∫ ∫

dxdt

[

1
v

(

∂φ

∂t

)2

− v
(

∂φ

∂x

)2

+ hq cos(2
√
πKφ)

]

The ‘cosine’ term has scaling dimension K . So it gives rise to a
finite correlation length which scales as ξ ∼ h−q/(2−K ). Hence
the correlation length exponent is ν = q/(2 − K )

If h(t) is quenched across the QCP at h = 0, the defect density
will scale as 1/τν/(ν+1) = 1/τq/(q+2−K )



Quenching in a Tomonaga-Luttinger liquid

The loading of interacting bosons in a one-dimensional optical lattice
gives another example of quenching in a Tomonaga-Luttinger liquid

Suppose that the periodic potential of the optical lattice is changed in
time as V (x , t) = V (t) cos(2πx/a), where the lattice spacing a is
commensurate with the bosonic density

De Grandi, Barankov and Polkovnikov, Phys. Rev. Lett. 101 (2008)
230402



Tomonaga-Luttinger liquid · · ·

This is a special case of our model with q = 1 , i.e.,
there is only one particle in each well of the periodic potential

If the periodic potential is changed slowly as V (t) = t/τ, the
number of defects (potential wells having less than or more than
one particle) will scale as

n ∼ 1/τq/(q+2−K ) = 1/τ1/(3−K )

This result holds only for K < 2

K = 2 is the Kosterlitz-Thouless point

For K > 2, the cosine term is irrelevant, and the defects receive
contributions from all modes, not just the low-momentum modes.
Then one finds that n ∼ 1/τ for any value of q
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