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1. Syassen et al. (Science 320, 1329 (2008)) showed 

that a strong two-body loss process (inelastic 

collision) for molecules in an optical lattice could 

produce an effective  hard-core repulsion and thus 

a Tonks gas in 1D. 

2. A large loss dynamically suppresses process 

creating two–body occupation on a particular site. 



1. Daley et al. (PRL 102, 040402 (2009)) proposed that the 

large three-body combination loss process (via triatomic 

Efimov resonance [Kraemer et  al. Nature 440, 315 (2006)] ) can 

leads to an effective three-body interactions – a three-

body hard-core constraint. 

2. This constraint stabilizes the attractive bosonic system 

(U<0) from collapse.  
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If U>0, the ground states are either Mott insulator or 

atomic superfluid phases of Bose-Hubbard model. 
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The system is described by the attractive Bose-Hubbard 

Hamiltonian: 

with the constraint  03 
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Mean field result for one 

dimensional chain: 
0a

0a

02 a

U<0 

note that there is no 

hopping of dimers in H. 

Daley et al. (PRL 102, 040402 (2009)) 



1. The DSF order parameter 

transforms with the double phase 

~ exp(2iθ) compared to the ASF 

order parameter ~ exp(iθ).   

2. The symmetry θ-> θ+π exhibited 

by the DSF is broken when 

reaching the ASF phase. 

3. A spontaneous breaking of a 

discrete Z2 symmetry, reminiscent 

of an Ising transition 

4. ASF and DSF can be expt. 

distinguished by measuring the 

momentum distribution, which has 

zero momentum peak for ASF 

state but not for DSF. 

2nd order is 

expected 

Daley et al. (PRL 102, 040402 (2009)) 



• However this result is revised by the group Diehl et al. 

(PRL 04, 165301 (2010)). 

• One reason to question the MF result is the presence of 

two interacting soft modes (related to <a> and <a2>) 

close to the phase transition. 

• Quantum fluctuations can turn this transition into a 1st 

order one due to the Coleman-Weinberg mechanism. 

Fluctuation 

induced 1st 

order 

At n=1, 

coupling 

vanished; it 

is 2nd order 

transition of 

Ising type 



Our model: 

In order to enlarge the DSF regime, we add a nn repulsive 

term V in the Hamiltonian: 
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U<0 but V>0 (V can arise from dipole-dipole interactions) 

For illustration, μ=-0.55, |U|=1, and V=0.25 

• Again, there is no hopping of dimers in H. 

• the hopping of dimers is a second order effect. 

• DSF occurs only in low T < t2 



Order parameters: 

Superfluidity (spin stiffness)  ρ is related to the 

winding number (W) fluctuations in the simulation.  
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1. To identify the ASF and DSF, we measure the 

odd and even winding number separately. 

2. In the ASF phase, both ρodd and ρeven are 

finite. 

3. While the DSF phase, ρeven is finite but ρodd=0 

(two bosons move together) . 

We try to study numerically the DSF phase using SSE 

(stochastic series expansion) method. 

m is the effective mass in 

square lattice 
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Basic idea of Stochastic Series 

Expansion (SSE) 
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Thermal expectation value 
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Examples of dimer hopping 

The dimer hopping always 

lead to even winding number. 

Two loops algorithm 
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Conventional one loop 

algorithm 
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2     0 

1     1 

This two steps hopping is 

very ineffective, especially in 

large lattice size. 



Ground state phase diagrams: 

T/|U|=0.001 

dimer charge 

density wave 

(n=1) 

1st order 

2nd order 

n <= 1 



Finite size 

analysis 

DSF-ASF 1st 

order transition  

(48x48 at 

T=0.005) 

DSF 
ASF 



MI (n=2) 



Finite temperature phase diagram. 

KT type 

1st order 

• the underlying Coleman-

Weinberg mechanism is 

not spoiled by the thermal 

fluctuations. 

• Both of continuous KT (Kosterlitz-

Thouless) type, but with distinct 

characters.  

• universal stiffness jump of DSF is 

4 times larger than that of ASF 

• DSF-N transition is driven by the 

unbinding of half-vortices. 



KT renormalization group 

integral equantion: 
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1. data of pairs of 

sizes collapse into 

a straight line. 

2. TKT is given at κ=1. 

The universal jump is given by: 
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The vorticity ν=±1 for 

conventional KT transition. 
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t=0.14 

Weber and 

Minnhagen (1988) 

Boninsegni and 

Prokofev (2005) 



1. For the DSF, it preserves the π phase-rotation 

symmetry as exp(2iθ )  

2. the vorticity ν is ±1/2 instead of ±1. 

3. the unversial jump is then  


 KT
s

mT8
 4 times larger than 

conventional case 

t=0.1 



KT type 

1st order 

• The nn repulsive interaction enhances the formation 

of DSF 

t=0.1, mu=-0.52 



Similar works: 

L. Bonnes and S. Wessel, PRL 106, 185302 (2011). 

arXiv: 1101.5991 



Histograms of condensate density show a power-law 

decay s.t. variance does not exist, central limit 

theorem for the mean value doesn’t hold  

• To overcome 

this, a dimer 

hopping t’ term is 

added,  

• but one has to 

extrapolate to 

t’=0. 

• it is inefficient. 



Summary: 

1. Using the two-loops algorithm, the finite 

temperature phase diagram for DSF and ASF 

phases is studied. 

2. DSF-ASF transitions are fluctuation induced 1st 

order as predicted by Diehl et al., and preserved 

at finite temperature. 

3. KT transitions observed for ASF-N and DSF-N 

transitions, but with distinct characteristics: DSF-N 

is driven by unbinding of half-vortices. 

4. The anomalous KT transition can be served as a 

signature for the DSF in real experiments.  


