Searching beyond the SM

"…the direct method may be used...but indirect methods will be needed in order to secure victory." "...there are not more than two *methods of attack – the direct and the* indirect, ... who can exhaust the possibilities of their combination?" Sun Tzu, The Art of War

John Ellis

Summary of the Standard Model

• Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

Where are we?

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2, -1) (1,1, -2)	
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$	

• Lagrangian: $\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} + i\bar{\psi} D\psi + h.c. + \bar{\psi}_{i} y_{ij} \psi_{j} \phi + h.c. + |D_{\mu} \phi|^{2} - V(\phi)$ gauge interactions matter fermions matter fermions Use of the theorem of t

LHC Measurements

The Particle Higgsaw Puzzle

Has LHC found the missing piece? Is it the right shape? Is it the right size?

Higgs Mass Measurements

• ATLAS + CMS ZZ* and $\gamma\gamma$ final states

Crucial for stability of electroweak vacuum

- Run 1: 125.09 ±0.21 (stat) ±0.11 (syst)
- ATLAS Run 2: 124.97 ± 0.24 GeV
- CMS Run 2: 125.35 ± 0.15 GeV 0.1% accuracy!

It Walks and Quacks like a Higgs •Do couplings scale \sim mass? With scale = v? 35.9-137 fb⁻¹ (13 TeV) $\frac{1}{m_{\rm H}} \frac{1}{10^{-1}}$ CMS Preliminary m_H = 125.38 GeV p-value = 44% 10^{-2} ns and neutrinos Quarks 10^{-3} Higgs boson Force carriers 10^{-4} Ratio to SM 1.5 0.5^L particle mass (GeV)

Everything about Higgs is Puzzling $\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0$ • Pattern of Yukawa couplings y: - Flavour problem Magnitude of mass term μ : - Naturalness/hierarchy problem • Magnitude of quartic coupling λ : Stability of electroweak vacuum

- Cosmological constant term V_0 :
 - Dark energy

Higher-dimensional interactions?

– Needed for BSM interpretation

Big statistics at FCC-hh/SppC

Numbers of Diagrams to be Calculated

		$Z ightarrow b ar{b}$	Blondel et al, arXiv:	1809.01830
Number of	1 loop	2 loops	3 loops	
topologies	1	$14 \stackrel{(A)}{ ightarrow} 7 \stackrel{(B)}{ ightarrow} 5$	$211 \stackrel{(A)}{ ightarrow} 84 \stackrel{(B)}{ ightarrow} 51$	
Number of diagrams	15	2383 $\stackrel{(A,B)}{\rightarrow}$ 1074	490387 ^(A,B) → 120472	4
Fermionic loops	0	150	17580	
Bosonic loops	15	924	102892	
Planar / Non-planar	15/0	981/133	84059/36413	
QCD / EW	1/14	98 / 1016	10386/110086	t of work
	Z	$T ightarrow e^+e^-, \ldots$	for	theorists
Number of	1 loop	2 loops	3 loops	foogible!
topologies	1	$14 \stackrel{(A)}{ ightarrow} 7 \stackrel{(B)}{ ightarrow} 5$	$211 \stackrel{(A)}{\rightarrow} 84 \stackrel{(B)}{\rightarrow} 5_1$	leasible!
Number of diagrams	14	$2012 \stackrel{(A,B)}{\rightarrow} 880$	397690 $\stackrel{(A,B)}{ ightarrow}$ 91472	
Fermionic loops	0	114	13104	
Bosonic loops	14	766	78368	
Planar / Non-planar	14/0	782/98	65487/25985	
OCD / EW	0/14	0 / 880	144/91328	The way

Sensitivity to HHH Coupling

Sensitivity to HHH Coupling

Sensitivity through radiative corrections

Combining all FCC-ee centre-of-mass energies: precision in κ_{λ} of ±40% Improved to ±35% in combination with HL-LHC Further improved to ±25% when c_7 fixed to SM value.

Nothing (yet) at the LHC

No supersymmetry

Nothing else, either

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force

- Dimension-6 operators: form = S, P, V, A, T?
 - Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory
- Yukawa's meson theory of the strong N-N force
 Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

One way to look for BSM physics

Standard Model Effective Field Theory

- Higher-dimensional operators as relics of higher-energy physics, e.g., dimension 6: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by SU(2) × U(1) symmetry, assuming conventional representation assignments for SM particles
- Constrain coefficients with top, EW, Higgs, diboson data
- Non-zero coefficient(s) could indicate what BSM
 - Masses, spins, quantum numbers of new particles?
 - Derivative interactions characteristic of new strong dynamics?

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1 and 2
- Constraints on BSM
 - At tree level
 - At loop level
- Any indications?

Madigan, Mimasu, Sanz & You, arXiv

Dimension-6 Operators in Detail

 Including 2- and 4-fermion operators

- Grey cells
 violate SU(3)⁵
 symmetry
- Use when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

	X^3	H^6 and $H^4 D^2$ Cosmological phase transit											
O_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	${\cal O}_{eH}$	$(H^{\dagger}H)(l_p e_r H)$								
$\mathcal{O}_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$		\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$								
\mathcal{O}_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	O_{HD}	$\left(H^{\dagger}D^{\mu}H\right) ^{*}\left(H^{\dagger}D_{\mu}H\right) $	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$									
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$		Derivative interaction										
	X^2H^2		$\psi^2 X H$, ↔									
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p}\gamma^{\mu} l_{r})$								
$\mathcal{O}_{H\tilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}iD_{\underline{H}}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$								
\mathcal{O}_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$	\mathcal{O}_{He}	$(H^{\dagger}i \overset{\frown}{D_{\mu}} H)(\bar{e}_p \gamma^{\mu} e_r)$								
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}iD_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$								
\mathcal{O}_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}iD^{I}_{\underline{\mu}}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$								
$\mathcal{O}_{H\tilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	\mathcal{O}_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i D_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$								
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{_{dW}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\bar{d_{p}}\gamma^{\mu}d_{r})$								
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{{}_{dB}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	\mathcal{O}_{Hud}	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$								
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$									
O_{ii}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$								
$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$								
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$								
$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$								
$O_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$								
		$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (d_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$								
		$\mathcal{O}_{ud}^{(8)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (d_s \gamma^\mu T^A d_t) \right $	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (d_s \gamma^\mu d_t)$								
				$\mathcal{O}_{qd}^{(8)}$	$\left[(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t) \right]$								
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating											
\mathcal{O}_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{\mu}^{a} ight) ight]$	$(a_r)^T C u_r^\beta$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$								
$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\mathcal{O}_{_{qqu}} = \varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$										
$\mathcal{O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	${\cal O}_{_{qqq}}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q\right)\right]$	${}_{p}^{\alpha j})^{T}Cq_{r}^{\beta}$	$\begin{bmatrix} (q_s^{\gamma m})^T C l_t^n \end{bmatrix}$								
$\mathcal{O}_{i_{1}}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	\mathcal{O}_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[\left(d_{p}^{\alpha}\right)\right]$	$T^{T}Cu_{r}^{\beta}$	$(u_s^{\gamma})^T Ce_t$]								
- requ													

Dimension-6 Constraints with SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over other
 operator
 coefficients

JE, Madigan, Mimasu, Sanz & You arXiv:2012.02779

Dimension-6 Constraints with SU(2)² x SU(3)³

- Individual operator coefficients
- Marginalised over other
 operator
 coefficients

JE, Madigan, Mimasu, Sanz & You arXiv:2012.02779

Correlation Analysis

- Main correlations within sectors
- Also significant correlations of top with other sectors

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

		-	EWP	0	_			_	_	_	_	_	_	Bose	nic	_	_	_	_	Yuka	wa	_		Тор	2F	_	_	_	_	Тор	4F	_	_	_	_	_	_	_	- 100	,
		C_{td}^8	-015	+0.1											+36				-34	+0.5	-0.3		+24	+0.3							+40	+33	-30		+20	-67	+100			
		C_{tu}^8	+0.1	-0.1					0.1		-1.1	+0.1				+0,1	0	0	+29		+0.1			+0.2		+9.5					-93	-90	+32	+4.1		+100	-67			
		C_{tq}^8	-8.2	+0.1							+0.1	-0	+0.1					-0		+0.7	-0.1		+23			-68	+5.9				+32	+31	-86	-60	+100		+20			
		C_{Qd}^8	+0.1	-0.1			+0	1.1	0.1		-0	۰	-0.3		+11	+0,1	+0,1	0	+2.6		0		+1.9	+0.8		+26							+9.7	+100	-60	+4.1	+5.5			
		C_{Qu}^8	+0.1	-0.3					0.1		-0.1	۰	-3.3		-40	+0,1	0	0	+43	-0.7	+0.1					+69	+2.1						+100	+9.7	-86	+32	-30			
		$C_{Qq}^{1,8}$		0							+0.1	-0.3	+0.1			-8	0	- 11		+0.5	-67		+14				+6.6				+93	+100			+31	-90	+33			
		$C_{Qq}^{3,8}$		+0.1					9.3		+0.1	-3	+0.1			-0.3	-0.1	-0		+0.5	-9.3		+14		+0.4	-4.3	+6.8	+0.2			+100	+93			+32	-93	+40			
-	Top 4F	$C_{Qq}^{3,1}$	-3.6	+1.1		+2.	9				+0.6		+0.7			-1.5		+0.1	+1.5	+1.6	+0.4		-1.7	+57	-53	-15	- 2 - 2	+0.7	+6.9	+100			-1.1	+0.5		+0.1	+0.2			
		CtB	4,9					Т		+11			+4,4				-4.6	+1.6					+5.0	-15	+18			+1.7		+6.9	+0.6		-8.8		+8.8		+1.4		- 50	
		C_{tW}	+1.1	1.6		5		1.64	0.6		-0.4	+0.1	-3.4	+0.8		+1.1	+1.1			- 1			+0.3	-7.4		+2.0	+2.5	+100			+0.2	+0.2	•		+0.2					
		C_{tG}	-83.2	+0.7			2				+0.4		+0.5	+0.3			-0.5		-48	+2.9			+42	-5.7		+6.3	+100				+6.8	+6.6	+2.1		+5.9		-3-2			
		C _{Ht}	-6.1	+6.1			8				+3.2	+0.6	+4.9						+6.2				-54	-26	+27	+100	+6.3						+69	+26	-68	+9.5	-12			
		$C_{HO}^{(1)}$	-24	+20			4				+13		+18					+0.7					+4.2	-93	+100	+27	+5.6			-53	+0.4	+0.3	+0.1		+0.3					
	Top 2F	$C_{HO}^{(3)}$	-1.9	+1.4					1.3		+0.8					-1.7	-1.3	+0.1	+2.7	+2.8	+0.7			+10	-93	-26				+57						+0.2	+0.3			
	********	CtH	+22	-28					+28		-17	+6.9	-20	-59				+2.7	-50	-7.9			+100		+4.2	-14	+42						-29	+1.9		-19	+24			
		Сьн	+8.3			+7.	2 +3	22 -	+21	+68		+3.4		-47		+10	+8.3	+5.1	+0.6	+20	+4.8	+100	+39	+4.3		-1.5							+0.2			+0.2				
		$C_{\mu H}$	+5.9			5+2.	2+6	5.4	6.4			+1.4		-2.6	+0.8	+5.9	+5.8	+0.4	+0.3	+4.0	+100		+0.8	+0.7									+0.1			+0.1				
	Yukawa	CTH	+10			5+2.	9+1		+11							+9.2	+10	+0.6		+100	+4.0		-7.9	+2.8			+2.9				+0.5				+0.7		+0.5		-0	100
		CG	+0.5												-39				+10				-50	+2.7			-48			+1.5	-24		+43		-38	+29	-34			10.00
		Cw	+2.4			3+5.	8+3	1.2	3.4			+0.7				+2,4	+2.4	+100	0	+0.6	+0.4		+2.7	+0.1							-0		0			0	1			100
		Снв	+98	-97	+12	-23	+	97 -	+97		-45	+24	-75	-43		+94	+100	+2.4	+0.4	+10	+5.8		+21													0				
		CHW	+98	-97	+13	-23	+	97 -	+97	-37	-45	+24	-75	-49		+100	+94		+0.5	+9.2	+5.9		+25													+0.1				
		CHG	+7.4		+2.:	3 -23	+3	1.4	3.6		+0.2	+1.1		+6.2	+100	+6.9	+7.1		-39	-11	+0.8		+50								+16		-40	+11	+27	-24	+36			1000
	Bosonic	Снвох	-45	+52			- 1	12 -	-52		+30		+39	+100		-49	-43			+15		-47	-59			+2.9	+0.3										+0.1			100
	bosome	Сни	-76	+76	-22	+1	2 -7	5	-76	+8.6	+35	-7.2	+100			-75	-75					-14	-20	+1.0	+18	+4.9	+0.5		+4.4	+0.7	+0.1	+0.1			+0.1		0			
/		Сна	+25	-23	+10	-14	+	21 -	+22		+5.9	+100	-7.2			+24	+24	+0.7		+1.8	+1.4		+6.9			+0.6										+0.1	0		50	
		$C_{\mu a}^{(1)}$	-45	+45	-12	+9.	3 -4	15 -	-45		+100	+5.9	+35	+30	+0.2	-45	-45	-1.1					-17	+0.8			+0.4										0			
		$C_{\mu a}^{(3)}$	-39	+24		+9	1			+100	+11		+8.6					+4.6		+0.7	+1.1	+68	+24	+3.4			+0.3									+0.1				1
		Cua	+98	-100	+13		+1	00+	100	-24	-45	+22	-76	-52	+3.6	+97	+97	+3.4	+0.5	+11	+6.4		+28													+0.1				1.00
		$C_{(1)}^{(1)}$	+98	-100	+8.	2	+1	00+	100		-45	+21	-75	-52	+3.4	+97	+97	+3.2	+0.5	+11	+6.4		+28													+0.1				
and the second		C ⁽³⁾	-25	+8.2	+1.	5+10	0		0.0	+91	+9.3	-14	+12			-23	-23	+5.8	+0.2	+2.9	+2.2		+28	+3.3	+24	+0.8	+0.2			+2.9			+0.2			+0.1				1
-		-m Cu	+16	-14	+10	0+1.	5+8	1.2	+13			+10	-22		+2.3	+15	+15	+3.3	+0.1	+0.6	+0.5		+1.9													0	+0.1			
-		Cur	-98	+ 100		+8	2 -1	00 -	100	+24	+45	-23	+76	+52		-97	-97						-78	+1.4	+20	+6.1	+0.7				+0.1				+0.1		+0.1			
1	EWPO	CHUR	+100	-98	+16	-25	+	98 -	+98		-45	+25	-76	-45		+98	+98	+2.4	+0.5	+10	+5.9	+8.3	+22										+0.1	+0.1		+0.1				
-	EWPO	-nwb	9	0	, 2	<u>-</u>	.2	_	ų	<u>ش</u> ت	30	3	2	×	ы	2	90	Ş	6	ï	I	3	x	 @0	20	*	G	2	99		æ _			. Þ	<u>بر</u> ه	œ.∂	<u>8</u> 0		1-10	0
			CHW	ð	0	3	ΞÇ	f,	σ	Ű	Ű	ΰ	Ĵ	HBG	đ	£	Ĵ	บี	Ű	ບ້	ບື	ບໍ່	ບ້	5	J	ΰ	Ű	ບັ	ũ	ΰĞ	ΰČ	ΰ	0	ů	ũ	ũ	G			
-	STATE OF	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0	-	1.15	-		1	-	100		1.77	1	0	17. 19	-	10.75	-	-	1. C. C.	-						1000		100	C	1000	1	100	100	1.00	and a state	1		-	
																														- in			100			This	1 all all	-	-	

Principal Component Analysis

- Diagonalise correlation matrix
- Analyze eigenvectors and eigenvalues
- Scales from 20 TeV to 100 GeV
- Strongest constraints from EW, H, STXS

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Less constrained operator combinations \rightarrow

Relative

importance

%

Relative constraining power (%)

Constraints on Single-Field BSM Scenarios

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

SMEFT Constraints on Light Stops

Stops contribute to 4 SMEFT operators

• Must weigh > 300 GeV, except for mixing parameter $X_t \sim 1.5 m_{stop}$

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Model-Independent BSM Survey

- Top-less sector fits SM very well
- Top sector does not fit so well
- Overall, pulls not excessive
- No hint of BSM

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

FCC CDR Future EFT Constraints from Higgs and **Electroweak Measurements**

Gravitational Wave Spectrum

- Gap between ground-based optical interferometers & LISA
 - Formation of supermassive black holes (SMBHs)?
 - Electroweak phase transition? Cosmic strings?
- Gap between LISA & pulsar timing arrays (PTAs)

AION Atom Interferometer Collaboration

L. Badurina¹, S. Balashov², E. Bentine³, D. Blas¹, J. Boehm², K. Bongs⁴, D. Bortoletto³, T. Bowcock⁵, W. Bowden^{6,*}, C. Brew², O. Buchmueller⁶, J. Coleman⁵, G. Elertas, J. Ellis¹, ⁸, C. Foot³, V. Gibson⁷, M. Haehnelt⁷, T. Harte⁷, R. Hobson^{6,*}, M. Holynski, A. Khazov², M. Langlois⁴, S. Lellouch⁴, Y.H. Lien⁴, R. Maiolino⁷, P. Majewski², S. Malik⁶, J. March-Russell³, C. McCabe¹, D. Newbold², R. Preece³, B. Sauer⁶, U. Schneider⁷, I. Shipsey³, Y. Singh⁴, M. Tarbutt⁶, M. A. Uchida⁷, T. V-Salazar², M. van der Grinten², J. Vossebeld⁴, D. Weatherill³, I. Wilmut⁷, J. Zielinska⁶

¹Kings College London, ²STFC Rutherford Appleton Laboratory, ³University of Oxford, ⁴University of Birmingham, ⁵University of Liverpool, ⁶Imperial College London, ⁷University of Cambridge

AION – Staged Programme

- AION-10: Stage 1 [year 1 to 3]
- Strontium labs, 10 m interferometer & studies for
 100m Baseline
 Initial funding from UK STFC
- AION-100: Stage 2 [year 3 to 6]
- 100m Construction & Commissioning
- AION-KM: Stage 3 [> year 6]
- Operating AION-100 and planning for 1 km & beyond
- AEDGE (AION-SPACE): Stage 4 [after AION-KM]
- Space-based version

AION Collaboration (Badurina, ..., JE et al): arXiv:1911.11755

Probing Extensions of the Standard Model

Simulation of bubble collisions – D. Weir

GWs from First-Order Phase Transition

- Transition by percolation of bubbles of new vacuum
- Bubbles grow and collide
- Possible sources of GWs:
 - Bubble collisions
 - Turbulence and sound waves in plasma
- Models studied:
 - Standard Model + H^6/Λ^2 interaction
 - Standard Model + $U(1)_{B-L} Z'$
 - These also have prospective collider signatures

JE, Lewicki, No & Vaskonen, arXiv:1903.09642

Gravitational Wave Sensitivity to Scale of H⁶ Interaction

Modification of Triple-H Coupling

- Current LHC data insensitive to H^6/Λ^2 coupling
- Future collider sensitivity via modification of triple-Higgs coupling λ_3

No collider sensitivity now, will eventually be > gravitational waves

Gravitational Waves from $U(1)_{B-L}$ Phase Transition

AEDGE: Bertoldi, ..., JE et al: arXiv:1908.00802

AION GW SNR in Z' Model

Above red line: transition before vacuum energy dominates Right of orange line: period of matter domination

JE, Lewicki, No & Vaskonen, arXiv:1903.09642

Collider Sensitivities to Z' Models

- Direct limit > 3.5 TeV
- Indirect limit > 1 TeV for couplings O(1)

Collider sensitivity will be < gravitational waves

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Pulsar Timing Arrays

NANOGRav has observed 47 pulsars over 12.5 yrs ...

NANOGrav Collaboration: arXiv:2009.04496

NANOGrav Collaboration: arXiv:2009.04496

Pulsar Timing Data from NANOGrav

NANOGrav reports "strong evidence for a stochastic common-spectrum process" at frequencies < 10⁻⁸ Hz No dipole or quadrupole signal detected Fits to amplitude of signal Focus on simple power law Amplitude A ~ 10^{-15} Slope $\gamma \sim 5$ Vertical dashed line: expected Default in models of mergers model of supermassive BHs

Probing Cosmic Strings Hint from the NANOGrav pulsar timing array?

Cosmic String Interpretation of NANOGrav

"Rainbow curve"
 is cosmic string prediction as a
 function of the cosmic string tension Gµ
 Vertical line is naïve SMBH merger prediction
 Previous PTA upper limits for
 this value of γ

Fits to NANOGrav signal at 1σ (68%), 2σ (95%) levels Compared to previous upper limits (previous NANOGrav superseded)

Cosmic String Interpretation of NANOGrav

ee also Blasi, Vrdar & Schmitz: arXiv:2009.06607v2

- « Empty » space is unstable
- Dark matter
- Flavour & origin of matter
- Masses/mixing of neutrinos
- Hierarchy problem
- Cosmological inflation
- Quantum gravity

THE STANDARD MODEL

There must be something!