# Long Lived Particles at Higgs Factories and LHeC

Kingman Cheung 10/6/2020 based on the works

1. K.C. and Zeren Simon Wang, <u>Probing Long-lived Particles at Higgs Factories</u>, Phys.Rev.D 101 (2020) 3, 035003 2. K.C., Oliver Fischer, Zeren Simon Wang, Jose Zurita, Exotic Higgs decays into displaced jets at the LHeC, 2008.09614.

# Motivations

of Electroweak Symmetry Breaking.

for exotic light particles.

$$H \to \Theta^{\dagger}\Theta, AA, \phi\phi,$$

the portal to the dark world.

- 1. Higgs boson is the Master Piece to understand the underlying physics
- 2. Among various avenues the rare Higgs decay is a useful one to search
  - $\chi\chi,\ldots$  etc
- 3. Especially, existence of hidden sectors that the Higgs boson acts as



systematic shortcoming.

such as squarks, gluinos in SUSY, top partners in composite models, etc.

all detections.

4. Quite a number of BSM predict existence of LLP.

5. Decay lengths are targeted at

 $O(10\,\mu m) < c\tau < 10\,m < O(km)$ 

LHC

6. Specific triggers will be installed in future runs at ATLAS and CMS.

# Motivations

- 1. Null results from search for BSM at the LHC raise the question if there is a
- 2. Current hardware and software triggers are mostly based on PROMPT DECAYS,
- 3. Another class of exotic particles Long Lived Particles (LLP) may have escaped

- - FASER, MATHUSLA

# Signatures of LLP's

- LLP's so produced travel a macroscopic distance before it decays. It can be electrically neutral or charged. For neutral ones
   —> Displaced Vertex
- 2. The easiest decay mode is into leptons, giving rise to displaced charged leptons or lepton-jets.
- 3. More arduous modes are fully hadronic, including emergent jets, dark jets, semi-visible jets, depending on the fraction of invisible decays.

# Models that predict LLP's

- SUSY, etc.
- 2. Heavy neutral leptons.
- 3. Z portals dark photons.
- boson and the hidden scalar boson. (Focus of this talk.)

# 1. RPV SUSY squarks and leptons with very small RPV couplings. Split

4. Higgs portal models with a small enough mixing between the Higgs

# LLP Search at Higgs Factories

K.C. and Zeren Simon Wang 1911.08721, PRD



• Focus on rare Higgs decays: a Higgs-portal model: a light scalar h<sub>s</sub>,

# Higgs Factories

Next generation e<sup>+</sup>e<sup>-</sup> colliders: CEPC, FCC-ee, ILC, etc • They will run at  $\sqrt{s} \simeq 240 \; {\rm GeV}$  (Higgs factory mode).

a neutral-naturalness model: the lightest mirror glue ball  $h \rightarrow h_{s}h_{s}, 0^{++}0^{++}$ 



| Detector    | $R_I \; [mm]$ | $R_O$ [m] | $L_d$ [m] | $V [\mathrm{m}^3]$ |
|-------------|---------------|-----------|-----------|--------------------|
| CEPC        | 16            | 1.8       | 2.35      | 47.8               |
| FCC-ee IDEA | 17            | 2.0       | 2.0       | 50.3               |

### **Calculations** Details

$$N_{\text{s.e.}}^{\text{IT}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{BR}(h \to XX)$$
$$N_{\text{s.e.}}^{\text{HCAL}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{BR}(h \to XX)$$
$$N_{\text{s.e.}}^{\text{MS}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{BR}(h \to XX)$$

For IT: requires at least one DV to form a signal event For HCAL/MS: requires two DV's

$$\langle P[s.e. \text{ in IT}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left( P[X_i^{\text{T}}] \right)$$
$$\langle P[s.e. \text{ in HCAL}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left( P[X_i^{\text{T}}] \right)$$
$$\langle P[s.e. \text{ in MS}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left( P[X_i^{\text{T}}] \right)$$

 $P[X_i \text{ in IT/HCAL/MS}]$  is the decay probability inside the fiducial components

- $\cdot \langle P[s.e. \text{ in IT}] \rangle \cdot \epsilon^{\text{IT}},$
- $\cdot \langle P[s.e. \text{ in HCAL}] \rangle$ ,
- $\cdot \langle P[s.e. \text{ in MS}] \rangle$ .

IT: Inner Tracker HCAL: Hadronic Calorimeter MS: Muon Spectrometer

- $X_i^1$  in  $\mathsf{IT}$ ] +  $P[X_i^2$  in  $\mathsf{IT}$ ]  $P[X_i^1$  in  $\mathsf{IT}$ ]  $\cdot P[X_i^2$  in  $\mathsf{IT}$ ])
- $X_i^1$  in HCAL]  $\cdot P[X_i^2$  in HCAL]
- $X_i^1$  in MS]  $\cdot P[X_i^2$  in MS])

# $P[X_i \text{ in IT}] = e^{-L_i/\lambda_i^t} \cdot (1 - e^{-L_i'/\lambda_i^t})$ $L_i \equiv \begin{cases} R_I, \text{ if } |L_d \tan \theta_i| \leq R_I \\ d_{res} = 5 \ \mu m, \text{ else} \end{cases}$ $L'_i \equiv \min(\max(R_I, |L_d \tan \theta_i|), R_O) - L_i$ $\lambda_i^t = \beta_i^t \gamma_i \tau_X$



### Not decay before reaching IT, decay within IT

| Detector   | $R_I \; [\mathrm{mm}]$ | $R_O$ [m] | $L_d$ [m] | $V [m^3]$ |
|------------|------------------------|-----------|-----------|-----------|
| CEPC       | 16                     | 1.8       | 2.35      | 47.8      |
| CC-ee IDEA | 17                     | 2.0       | 2.0       | 50.3      |





$$-e^{-R_e/\lambda_i^z} \cdot (1 - e^{-L_i^\beta/\lambda_i^t})$$
  
$$L_e) \tan \theta_i |), R_{\text{out}}) - R_e,$$

$$(\theta_i|), R_{\mathrm{in}}) - R_e,$$

# Not decay before HCAL/MS, decay within HCAL/MS

| ector  | $L_b$ [m] | $L_e$ [m] | $R_e$ [m] | $R_{\rm in}$ [m] | $R_{\rm out}$ [m] | V  |
|--------|-----------|-----------|-----------|------------------|-------------------|----|
| PC     | 5.3       | 1.493     | 0.50      | 2.058            | 3.38              | 22 |
| e IDEA | 6         | 2.5       | 0.35      | 2.5              | 4.5               | 58 |
| PC     | 8.28      | 1.72      | 0.50      | 4.40             | 6.08              | 85 |
| e IDEA | 11        | 1         | 0.35      | 4.5              | 5.5               | 53 |



# A Higgs Portal Model

### Add a real singlet field to the SM

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} X \partial^{\mu} X + \frac{1}{2} \mu_X^2 X^2 - \frac{1}{4} \lambda_X X^4 - \frac{1}{2} \lambda_{\Phi X} (\Phi^{\dagger} \Phi) X^2 + \mathcal{L}_{SM} ,$$

$$\phi \rangle^2 = \frac{4 \lambda_X \mu^2 - 2 \lambda_{\Phi X} \mu_X^2}{4 \lambda \lambda_X - \lambda_{\Phi X}^2} ,$$

$$\phi \rangle^2 = \frac{4 \lambda_X \mu^2 - 2 \lambda_{\Phi X} \mu_X^2}{4 \lambda \lambda_X - \lambda_{\Phi X}^2} ,$$

$$\chi \rangle^2 = \frac{4 \lambda \mu_X^2 - 2 \lambda_{\Phi X} \mu^2}{4 \lambda \lambda_X - \lambda_{\Phi X}^2} ,$$

$$\chi \rangle^2 = \frac{4 \lambda \mu_X^2 - 2 \lambda_{\Phi X} \mu^2}{4 \lambda \lambda_X - \lambda_{\Phi X}^2} ,$$

$$\begin{pmatrix} h \\ h_s \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

$$m_h^2 \simeq 2\lambda \langle \phi \rangle^2 = (125.10 \text{ GeV})^2$$
$$m_{h_s}^2 \simeq 2\lambda_X \langle \chi \rangle^2$$
$$\mathcal{L}_{hh_sh_s} = -\frac{1}{2}\lambda_{\Phi X} \langle \phi \rangle hh_sh_s$$
$$\theta \simeq \frac{\lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle}{m_h^2 - m_{h_s}^2},$$

- The mixing connects the dark sector with the SM
- 3 parameters:  $m_{h_s}$ ,  $\sin^2\theta$ ,  $\langle X \rangle$
- Consider sub-GeV  $h_{s}$ , such that the decay products are collimated.
- Production of  $h_s$

$$\Gamma(h 
ightarrow h_s h_s) \simeq rac{\sin^2 heta \left(m_h^2 - m_{h_s}^2
ight)^2}{32 \pi m_h \left\langle \chi 
ight
angle^2}$$

• Decay of  $h_s$  for 0.3 GeV - 1 GeV.  $h_s \rightarrow \mu^+ \mu^-, \pi \pi, 4\pi$ 

$$\Gamma(h_s \to \ell^+ \ell^-) = \sin^2 \theta \, \frac{m_\ell^2 m_h}{8\pi \langle \phi \rangle^2}$$

| $\Gamma(h_s \to \ell^+ \ell^-) = \sin^2 \theta  \frac{m_\ell^2 m_{h_s}}{8\pi \langle \phi \rangle^2} \left( 1 - \frac{4m_\ell^2}{m_{h_s}^2} \right)^{3/2}  .$ |       |       |       |       |       |       |       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| $m_{h_s} (\text{GeV})$                                                                                                                                        | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   | 1.0   |
| $\mathrm{Br}(\mu^+\mu^-)$                                                                                                                                     | 20.6% | 13.0% | 10.3% | 8.6%  | 7.1%  | 5.1%  | 2.5%  | 2.0%  |
| $\operatorname{Br}(\pi\pi)$                                                                                                                                   | 79.4% | 87.0% | 89.7% | 91.3% | 91.2% | 93.0% | 96.3% | 96.8% |
| $Br(4\pi)$                                                                                                                                                    | 0%    | 0%    | 0%    | 0.1%  | 1.7%  | 1.9%  | 1.2%  | 1.2%  |



muon channel

$$\langle \chi 
angle = 10 \,\, {
m GeV}$$

## ππ channel



- Proposed to solve the gauge hierarchy problem.
- Predict uncolored top partners to protect the Higgs boson mass up to 5 10 TeV.
- The top partner is either a SM singlet or only charged in the EW sector, thus can avoid most existing constraints.
- The top partner is charged under a mirror QCD sector  $SU(3)_B$
- Examples are folded SUSY, (fraternal) twin Higgs, quirky little Higgs, hyperbolic Higgs, ...
- In the folded SUSY, squarks are charged under SU(3)B, but not SU(3)C . SU(2)L  $\times$  U(1)Y
  - is shared between the SM particles and superpartners.
- In the mirror sector mirror glueballs are supposed to be the lightest states

## •Mirror Glueball Decays

Partial decay width into a pair of SM particles:  $\Gamma(0^{++} \to \xi\xi) = \left(\frac{1}{12\pi^2} \left[\frac{y^2}{M^2}\right] \frac{v}{m_h^2 - m_0^2}\right)^2 (4\pi\alpha_s^B \mathbf{F_{0^{++}}^S})^2 \Gamma_{h \to \xi\xi}^{SM}(m_0^2),$ 

• 
$$4\pi \alpha_s^B \mathbf{F_{0^{++}}^S} \approx 2.3 \ m_0^3$$

•  $\Gamma_{h \to \xi\xi}^{\text{SM}}(m_0^2)$  calculated with HDECAY 6.52

$$\frac{y^2}{M^2} \approx \begin{cases} \frac{1}{4v^2} \frac{m_t^2}{m_{\tilde{t}}^2}, \text{ Folded SUSY} \\ -\frac{1}{2v^2} \frac{m_t^2}{m_T^2}, \text{ Fraternal Twin} \\ \frac{1}{2v^2} \frac{v}{v_H} \sin \theta, \text{ Hyperbolic F} \end{cases}$$

• Two parameters:  $m_0$  and  $m_{\tilde{t}}$  for folded SUSY



- Higgs and Quirky Little Higgs liggs

### •Mirror Glueball Production

$$Br(h \rightarrow 0^{++}0^{++}) \approx Br(h \rightarrow gg)_{SM}$$

٠

• 
$$Br(h \rightarrow gg)_{SM} \approx 8.6\%$$
  
•  $\alpha_s^B(m_h)/\alpha_s^A(m_h) \sim \mathcal{O}(1)$ : ra  
SM QCD sectors

•  $\kappa(m_0)$ : the effect of the glueball hadronization mainly

• 
$$\kappa_{\max} = 1$$

$$\kappa_{\min}(m_0) = \frac{\sqrt{1 - \frac{4m_0^2}{m_h^2}}}{\sum_i \sqrt{1 - \frac{4m_i^2}{m_h^2}}}$$

$$\left(\frac{\alpha_s^B(m_h)}{\alpha_s^A(m_h)} 2 v^2 \left[\frac{y^2}{M^2}\right]\right)^2 \cdot \sqrt{1 - \frac{4m_0^2}{M_h^2}} \cdot \kappa(m_0),$$

atio of the couplings of the hidden and



# • Focus on $O^{++} \to b\bar{b}$ , with $M_{O^{++}} = 10 - 60 \text{ GeV}$ • Consider IT, HCAL, MS • Require $d_0 > 2$ mm for both b-jets stemming from any secondary vertex



# $N_{\rm signal} = 3, 10, 100$ events



# Exotic Higgs Decays into Displaced jets at LHeC

# Reconstructed level study

K.C., Oliver Fischer, Zeren Simon Wang, Jose Zurita, 2008.09614

# At ep Collisions, the dominant Higgs production



# Use the Higgs portal model with a complex singlet scalar

 $V(H,S) = -\mu_1^2 H^{\dagger} H - \mu_2^2 S^{\dagger} S + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (S^{\dagger} S)^2 + \lambda_3 (H^{\dagger} H) (S^{\dagger} S).$ 

e- (60 GeV) onto proton (7 TeV) Expect 1 ab<sup>-1</sup> 1.1 x 10<sup>5</sup> Higgs bosons

### Production

$$\Gamma(h_1 \to h_2 h_2) \simeq \frac{1}{32\pi m_{h_1}} (\lambda_3 v)^2 \left( 1 - \frac{4m_{h_2}^2}{m_{h_1}^2} \right)^{1/2} \simeq \frac{\sin^2 \alpha (m_{h_1}^2 - m_{h_2}^2)^2}{32\pi m_{h_1} x^2} \left( 1 - \frac{4m_{h_2}^2}{m_{h_1}^2} \right)^{1/2}$$

Decay  $\Gamma(h_2 \to f\bar{f}) = \frac{N_C(Y_f)}{Q_A}$ 

Decay length

 $c\tau = \frac{c}{\Gamma_{\rm tot}} \approx 1.2$ 

Mass range

Signature

 $M_{h_2} = 10 - 60 \,\mathrm{Ge^3}$ 

 $p e^- \rightarrow \nu_e j h_1 \rightarrow \nu_e j h_2 h_2 \rightarrow \nu_e j (b\overline{b})_{\text{displaced}} (b\overline{b})_{\text{displaced}}.$ 

$$\frac{4 \sin \alpha}{3\pi} m_{h_2} \left( 1 - \frac{4m_f^2}{m_{h_2}^2} \right)^{3/2} \left( 1 - \frac{4m_f^2}{m_{h_2}^2} \right)^{3/2} \left( 10^{-7} \right) \left( 10 \text{ GeV} \right)$$

$$\times 10^{-5} \left(\frac{10^{-7}}{\sin^2 \alpha}\right) \left(\frac{10 \text{ GeV}}{m_{h_2}}\right) \text{ m}$$

V, 
$$h_2 \to b\bar{b}$$



٠

100

# Calculation details

Event generation

### Detection Simulation

 $10 \,\text{GeV} < m_{h_2} < m_{h_1}/2, \qquad 10^{-12} \,\text{m} < c\tau < 100 \,\text{m}$  $p_T^{b,j} > 5 \text{ GeV}, |\eta^{b/j}| < 5.5, \Delta R(b, b/j) > 0.2$ 

Background processes  $N = n_b + n_\tau + n_i \le 4$ 

- Use MadGraph with Pythia 6.4.28 patched for ep collisions with
- Customized Delphes 3.3.2 with modules that allow the definition of displaced jets. Specifically, the transverse displacement of a jet
- $d_T(j) = \sqrt{d_x^2(j) + d_y^2(j)}$  is defined to be the minimum dT of all the tracks associated to the jet. And  $\Delta R(\text{track}, j) < 0.4$ ,  $p_T(\text{track}) > 1 \text{ GeV}$

 $p + e^- \rightarrow \nu_e + j + n_b b + n_\tau \tau + n_j j$ 

In principle, the prompt jet backgrounds  $(n_j>0)$  give no displaced objects. But a huge x-section multiplied to tiny efficiencies still generates a handful of events.



- Number of reconstructed jets  $n_I \ge 5$
- transverse displacements is < 50 µm.  $n_{hG} \ge 1$ ,  $m_{hG} > 6 \text{ GeV}$
- Invariant mass of all heavy groups  $m_{SS} \in [100, 150] \text{ GeV}$

$$N_S = N_{h_1} \cdot \operatorname{Br}(h_1 \to h_2 h_2) \cdot$$

$$N_B = \sum_{i=1}^{12} \mathcal{L}_{\text{LHeC}} \cdot \sigma_{B_i} \cdot \epsilon_{B_i}^{\text{cut}},$$

# **Event Selection**

• A jet as displaced if  $d_T(j) > 50 \, \mu m$ . Number of Displaced jets  $n_{\text{disp},J} > 0$ • The displaced jets are grouped together into a so-called "heavy group" if their  $(\operatorname{Br}(h_2 \to b\overline{b}))^2 \cdot \epsilon^{\operatorname{pr-cut-XS}} \cdot \epsilon_S^{\operatorname{cut}},$ 

 $N_{R} = 195$ 



Higgs Portal Model Result  $\alpha$  = mixing angle x = VEV

$$N_B = 195, N_S = 2\sqrt{B} = 28$$
  
 $N_B = 0, N_S = 3$   
at 95%CL

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_3.jpeg)

Model Independent Results: Production rate vs Decay length

![](_page_27_Figure_1.jpeg)

the ideal  $N_B = 0$  case.

Search for displaced jets can reach sensitivities down to (HL-LHC)  $B(h_1 \rightarrow \text{invisible}) \simeq 13\%$  (2.5%) The best sensitivity occurs at  $10^{-4} \,\mathrm{m} < c\tau < 10^{-1} \,\mathrm{m}$ , and 12 long lifetime.

- For those with  $c\tau > 0.1 \,\mathrm{m}$ , the decay of h<sub>2</sub> would be outside the IT. • In ideal case  $N_B = 0$ , the sensitivity can reach  $B(h_1 \rightarrow h_2 h_2) \sim 10^{-4}$

 $B(h_1 \rightarrow h_2 h_2) \sim 10^{-3}$ , which is much better than the current LHC

$$2\,\mathrm{GeV} < m_{h_2} < 20\,\mathrm{GeV}$$

• For  $c\tau < 1\,\mu\mathrm{m}$  the h<sub>2</sub> decay is pratically prompt. The reconstructed displacement of the final state cannot be disentangled from displaced decays of B mesons. Thus, efficiencies are much lower than those of

# Conclusions

- models with feeble couplings.
- $O(10^{-4} 10^{-3})$
- establish the more realistic sensitivity reach.

• Extending to search for LLP's can cover a larger parameter space for various

Branching ratio of the Higgs boson into a pair LLP's can be reached to

Reconstructed level analysis, instead of geometric analysis, is important to