Searching for the dark side of the universe with the help from the Sun

Haipeng An (Tsinghua University)
NCTS Annual Theory Meeting, Dec. 9-11, 2020

Concordant universe

What we know already

Dark matter is composed of non-relativistic particles.

Searching for dark matter

All the evidences of dark matter are from gravitational effects.

- We want to understand its particle nature:
 - Mass
 - Spin
 - Size
 - Inner structure if any
 - Interactions with Standard Model particles
 - Its self-interaction
 - •

Searching for WIMPs

Theories of dark matter

Possible mass range

Stars as Laboratories for Fundamental Physics

- Sun
 - closest to us
- Red Giants and horizontal branch stars
 - $T_{core} \sim 10 100 \text{ keV}$
- Neutron stars
 - large magnetic field
- Supernova
 - $T \sim 20 30 \text{ MeV}$
- Black holes
 - Superradiance

Outline

- Basic structure of the Sun
- MeV scale thermal dark matter (accelerated inside the Sun)
- Dark Photons
 - Produced inside the Sun
 - Converted at the Sun's corona
- Summary

Temperature distribution inside the Sun

Photosphere

Temperature distribution outside the Sun

From GeV to MeV

What if the DM is lighter than GeV scale?

Use electron recoil for light DM

For elastic scattering

$$E_{\rm recoil} \sim \frac{m_{\rm DM} m_T}{(m_{\rm DM} + m_T)^2} E_{\rm DM}$$

Use light targets

XENON1T 1907.11485

 m_D > 10 MeV

Motivations

- How to search for DM if m_D < 10 MeV?
 - Lower the threshold (Using semi-conductor, superconductor, or skipper CCD technology, nano tubes ...)
 - Accelerate the DM particles (Sun, cosmic rays)

Sensei Experiment

Skipper CCD technology

Electron recoild threshold $\sim 1.2 \text{ eV}$

 $m_D \sim$ 0.5 MeV for scattering $m_D \sim$ 1.2 eV for absorption

SENSEI 2004.11378, 48 gram-days

• The Sun can help us.

• The Sun can help us.

 $T_{sun} \sim 1 \text{ keV}$ well above the thresholds of most experiments!

• We pay the price that the flux at the earth surface is suppressed.

$$\Phi_{\text{Earth}} = \Phi_{\text{Sun}} \times \frac{\pi R_{\text{Sun}}^2}{4\pi d_{\text{Sun-Earth}}^2}$$

$$10^{-5}$$

Gravitational focusing effect

$$\frac{1}{2}v_{\rm DM}^2 = -\frac{G_N M_{\odot}}{R_{\odot}} + \frac{1}{2}v_{\rm DM}^{\prime 2}$$

$$v_{\rm DM}R_0 = v_{\rm DM}'R_{\odot}$$

$$\Longrightarrow \frac{R_0^2}{R_\odot^2} = 1 + \frac{2G_N M_\odot}{R_\odot v_{\rm DM}^2}$$

$$\frac{2G_N M_{\odot}}{R_{\odot}} = v_{\rm esc}^2 \approx (620 \text{ km/sec})^2$$

$$v_{\mathrm{DM}} \approx 220 \ \mathrm{km/sec}$$

$$\Longrightarrow \frac{R_0^2}{R_\odot^2} \approx 10$$

HA, M. Pospelov, J. Pradler, A. Ritz, PRL 120 (2018) 141801

HA, M. Pospelov, J. Pradler, A. Ritz, PRL 120 (2018) 141801

Observed relic abundance through thermal annihilation

SENSEI 2004.11378, 48 gram-days

Beyond contact interaction (work in progress)

- Very light mediator case
 - Freeze-in scenario (no N_{eff} constraint)
 - Kinetic mixing model (no constraint if the dark photon is very light)

Momentum dependent Debye screening effect

Beyond contact interaction (work in progress)

Inelastic dark matter excited inside the Sun

$$\frac{\chi}{2} = \frac{\chi_2}{\chi_1}$$
 $\Delta m_D \sim 1 \text{ keV} \ll m_D$

Baryakhar, Berlin, Liu, Weiner, 2006.13918 in light of XENON1T excess.

Outline

- MeV scale dark matter (accelerated inside the Sun)
- Dark Photons
 - Produced inside the Sun
 - Convert at the Sun's corona
- Summary

What is dark photon?

- It is a vector field coupled to SM particles only through kinetic mixing with the EM field.
- It is massive.

How to produce dark photon DM?

- The longitudinal mode of dark photon dark matter can be produced during inflation.

 P.W.Graham, J.Mardon, S.Rajendran, 1504.02102
- Parametric resonance production from scalar field oscillation.

R.T.Co, A.Pierce, Z.Zhang,Y.Zhao, 1810.07196

J.A.Dror, K.Harigaya, V.Narayan, 1810.07195

M.Bastero-Gil, J.Santiago, L.Ubaldi, R.Vega-Morales, 1810.07208

P.Agrawal, N.Kitajima, M.Reece, T.Sekiguchi, F.Takahashi, 1810.07188

Misalignment with non-minimal coupling to gravity

G.Alonso-Alvarez, T.Hugle, J.Jaeckel, 1905.09836

Photosphere

Searching for dark photon DM

- Produced inside the Sun
 - It will take more energy and accelerate the burning of the Sun.
 - It will change the temperature at the Sun's core and thus change the solar neutrino flux.
 - The keV scale dark photon can be directly detected by dark matter direct detection detectors.

Resonant production of dark photon inside the Sun

• Dispersion relations in the vacuum

$$-\,rac{\epsilon}{2}F'_{\mu
u}F^{\mu
u}$$

• For photon:

$$\omega^2 - k^2 = 0$$

• For dark photon:

$$\omega^2 - k^2 = m_{A'}^2$$

• Photons cannot convert into dark photon in the vacuum.

Resonant production of dark photon inside the Sun

Dispersion relations in plasma

$$-\,rac{\epsilon}{2}F'_{\mu
u}F^{\mu
u}$$

• For photon:

$$\omega^2 - k^2 = \omega_p^2$$

$$\omega^2 - k^2 = \omega_p^2 \qquad \omega_p^2 = \frac{4\pi\alpha_{EM}n_e}{m_e}$$

• For dark photon:

$$\omega^2 - k^2 = m_{A'}^2$$

• Photons can convert into dark photon in the plasma if $\omega_p = m_{AI}$

Resonant production of dark photon inside the Sun

Dispersion relations in plasma

$$-rac{\epsilon}{2}F'_{\mu
u}F^{\mu
u}$$

• For photon:

$$\omega^2 - k^2 = \omega_p^2$$

$$\omega^2 - k^2 = \omega_p^2 \qquad \omega_p^2 = \frac{4\pi\alpha_{EM}n_e}{m_e}$$

• For dark photon:

$$\omega^2 - k^2 = m_{A'}^2$$

- Photons can convert into dark photon in the plasma if $\omega_p = m_{AI}$
- This is only true for transverse photon.

Resonant production of Longitudinal dark photon

- What is longitudinal photon in a plasma?
 - It is a collective oscillation of the elections with dispersion relation:
 - For longitudinal dark photon we still have

$$\omega = \omega_p \qquad \qquad \omega^2 - k^2 = m_{A'}^2$$

To match the four-momentum, we have

$$\omega = \omega_p$$

$$\omega > m_{A'}$$

Resonant production of dark photon inside the Sun

Inside the Sun

.
$$1~{\rm eV} < \omega_p < 300~{\rm eV}$$
 surface center

- For $1 \, {\rm eV} < m_{A\prime} < 300 \, {\rm eV}$, both longitudinal and transverse models can be resonantly produced.
- For $m_{A\prime} < 1~{\rm eV}$ only longitudinal modes can be resonantly produced.
- For $m_{A'} > 300 \text{ eV}$, no resonant production.

Searching for dark photon DM

- Produced inside the Sun
 - Hidden Luminosity < 10% solar luminosity (solar neutrino flux)
 HA, M.Pospelov, J.Pradler, PLB 725 (2013) 190
 - Direct detection of solar dark photon by XENON experiments

HA, M.Pospelov, J.Pradler, PRL 111 (2013) 041302

HA, Pospelov, Pradler, A.Ritz, 2006.13929

Stueckelberg case vs Higgsed case

$$-\frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu} \longrightarrow \epsilon A_{\nu}\partial_{\mu}F'^{\mu\nu} \longrightarrow \epsilon m_{A'}^{2}A_{\mu}A'^{\mu}$$
 In vacuum
$$\mathcal{M} = \frac{\epsilon m_{A'}^{2}}{k^{2}}\langle f|J_{\mathrm{EM}}^{\mu}|i\rangle\varepsilon_{\mu}$$
 In plasma
$$\mathcal{M} = \frac{\epsilon m_{A'}^{2}}{m_{A'}^{2}-\Pi}\langle f|J_{\mathrm{EM}}^{\mu}|i\rangle\varepsilon_{\mu}$$

Transverse modes:
$$\Pi_T = \Pi_{\mu\nu} \varepsilon_T^\mu \varepsilon_T^\nu = \omega_p^2$$
 $\Pi^{\mu\nu} = \langle T J_{\rm EM}^\mu J_{\rm EM}^\nu \rangle$ $\Gamma_T \propto \epsilon^2 m_A'^4/\omega_p^4$

Stueckelberg case vs Higgsed case

$$-\frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu} \longrightarrow \epsilon A_{\nu}\partial_{\mu}F'^{\mu\nu} \longrightarrow \epsilon m_{A'}^{2}A_{\mu}A'^{\mu}$$
 In vacuum
$$\mathcal{M} = \frac{\epsilon m_{A'}^{2}}{k^{2}}\langle f|J_{\mathrm{EM}}^{\mu}|i\rangle\varepsilon_{\mu}$$
 In plasma
$$\mathcal{M} = \frac{\epsilon m_{A'}^{2}}{m_{A'}^{2}-\Pi}\langle f|J_{\mathrm{EM}}^{\mu}|i\rangle\varepsilon_{\mu}$$

Logitudinal mode:
$$\Pi_L = \Pi_{\mu\nu} \varepsilon_L^\mu \varepsilon_L^\nu \propto m_{A'}^2$$
 $\Pi^{\mu\nu} = \langle T J_{\rm EM}^\mu J_{\rm EM}^\nu \rangle$ $\Gamma_L \propto \epsilon^2 m_A'^2/\omega_p^2$

Comparison with the direct search for halo dark matter

Stueckelberg case vs Higgsed case

• Higgsed case $\frac{1}{2} m_A'^2 A_\mu' A'^\mu + e_D m_A' h_D A_\mu' A'^\mu + \frac{1}{2} e_D^2 h_D^2 A_\mu' A'^\mu$

• It is equivalent to the case of producing light milli-charged particle through massive photon decay. No suppression from m_A ,.

Searching for dark photon dark matter with thermal plasma

Dispersion relations in plasma

• For photon:
$$\omega^2-k^2=\omega_p^2$$
 $\omega_p^2=rac{4\pilpha_{EM}n_e}{m_e}$

- For dark photon: $\omega^2 k^2 = m_{A'}^2$
- Dark photons can convert into photon in the plasma if $\omega_p=m_{A\prime}$.
- The Sun's atmosphere is a vast source of plasma and may be transparent.

Dark photon dark matter converted at the Sun's atmosphere

Dark photon dark matter converted at the Sun's atmosphere

Resonant conversion

•
$$\omega_p = m_{A'}$$

Inside the dark matter halo

•
$$v_{A}$$
 ~ 10^{-3}

- The frequency of the converted photon
 - $\omega \approx m_A$, with the dispersion $\sim 10^{-6}$.
- The signal is a sharp peak in the solar spectrum

Absorption of the converted photon during propagation

Inverse bremsstrahlung absorption

$$\Gamma_{\rm inv} \approx \frac{8\pi n_e n_N \alpha^3}{3\omega^3 m_e^2} \left(\frac{2\pi m_e}{T}\right)^{1/2} \log\left(\frac{2T^2}{\omega_p^2}\right) \left(1 - e^{-\omega/T}\right)$$

Photon converted in chromosphere cannot fly out.

- Compton scattering
 - Compton scattering can shift the frequency of the converted photon.
- $\Gamma_{att} = \Gamma_{inv} + \Gamma_{com}$

Searching for the converted photon with radio telescopes

Searching for the converted photon with radio telescopes

• The minimal detectable flux $S_{\min} = \frac{\text{SEFD}}{n + \sqrt{n + \mathcal{B}t}}$

$$SEFD = 2k_B \frac{T_{\text{sys}} + T_{\odot}^{\text{nos}}}{A_{\text{eff}}}$$

Name	f [MHz]	$B_{ m res} \ [{ m kHz}]$	$ \langle T_{ m sys} \rangle $ [K]	$\overline{\left \langle A_{ m eff} angle ight. \left[{ m m}^2 ight]}$
SKA1-Low	(50, 350)	1	680	2.2×10^{5}
SKA1-Mid B1	(350, 1050)	3.9	28	2.7×10^4
SKA1-Mid B2	(950, 1760)	3.9	20	3.5×10^{4}
LOFAR	(10, 80)	195	$28,\!110$	1,830
LOFAR	(120, 240)	195	1,770	1,530

West Australia

Netherland

Radiofrequency Dark Photon DM

HA, F.P. Huang, J.Liu, W.Xue, arXiv:2010.15836

Summary and outlook

- Dark matters exist and we are eager to search for their particle natures.
- The Sun as own star may help us to search for them if they are light.

- We still don't fully understand the internal structure of the Sun. The magnetic field ($<10^7$ Gauss). If it is saturated the Sun can give a very stringent constraint on axions (Gurarini, Carenza, Galan, Giannotti, Mirizzi, 2010.06601).
- Can we use the plasma in the earth's ionosphere to search for dark photon?